Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jan 18;82(2):374–380. doi: 10.1054/bjoc.1999.0929

p16 protein expression is associated with a poor prognosis in squamous cell carcinoma of the lung

C-I Huang 1, T Taki 1, M Higashiyama 2, N Kohno 3, M Miyake 1
PMCID: PMC2363276  PMID: 10646891

Abstract

An immunohistochemical analysis for p16 protein was performed in 171 patients with non-small-cell lung cancer (NSCLC). Sixty-two carcinomas (36.3%) were classified as p16-negative. p16-negative tumours in squamous cell carcinomas (SCCs) were significantly more than those in adenocarcinomas (P = 0.039). There was no significant difference in survival according to tumour p16 status in patients with NSCLCs or in patients with adenocarcinomas. In contrast, of patients with SCCs, the 5-year survival rate of patients with p16-negative tumours was significantly lower than those with p16-positive tumours (P = 0.001). Especially, the survival of patients with p16-negative tumours was significantly worse than that of patients with p16-positive tumours in the early stage of the SCC, e.g. stage I (P = 0.005). Multivariate analysis showed that p16 status and nodal status were significant prognostic factors for the survival of patients with SCCs of the lung (P = 0.024 and P = 0.008 respectively). In conclusion, our study showed that alteration of p16 was one of the significant factors of a poor prognosis in SCCs of the lung, and that p16 might play an important role in some SCCs of the lung due to its high prevalence and prognostic value. © 2000 Cancer Research Campaign

Keywords: p16, lung cancer, prognosis, immunohistochemistry

Full Text

The Full Text of this article is available as a PDF (200.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betticher D. C., White G. R., Vonlanthen S., Liu X., Kappeler A., Altermatt H. J., Thatcher N., Heighway J. G1 control gene status is frequently altered in resectable non-small cell lung cancer. Int J Cancer. 1997 Oct 21;74(5):556–562. doi: 10.1002/(sici)1097-0215(19971021)74:5<556::aid-ijc14>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  2. Chung G. T., Sundaresan V., Hasleton P., Rudd R., Taylor R., Rabbitts P. H. Sequential molecular genetic changes in lung cancer development. Oncogene. 1995 Dec 21;11(12):2591–2598. [PubMed] [Google Scholar]
  3. Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol. 1995 Sep;147(3):545–560. [PMC free article] [PubMed] [Google Scholar]
  4. Dong J. T., Lamb P. W., Rinker-Schaeffer C. W., Vukanovic J., Ichikawa T., Isaacs J. T., Barrett J. C. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 1995 May 12;268(5212):884–886. doi: 10.1126/science.7754374. [DOI] [PubMed] [Google Scholar]
  5. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990 Jan 3;82(1):4–6. doi: 10.1093/jnci/82.1.4. [DOI] [PubMed] [Google Scholar]
  6. Fukuyama Y., Mitsudomi T., Sugio K., Ishida T., Akazawa K., Sugimachi K. K-ras and p53 mutations are an independent unfavourable prognostic indicator in patients with non-small-cell lung cancer. Br J Cancer. 1997;75(8):1125–1130. doi: 10.1038/bjc.1997.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gazzeri S., Gouyer V., Vour'ch C., Brambilla C., Brambilla E. Mechanisms of p16INK4A inactivation in non small-cell lung cancers. Oncogene. 1998 Jan 29;16(4):497–504. doi: 10.1038/sj.onc.1201559. [DOI] [PubMed] [Google Scholar]
  8. Geradts J., Fong K. M., Zimmerman P. V., Maynard R., Minna J. D. Correlation of abnormal RB, p16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res. 1999 Apr;5(4):791–800. [PubMed] [Google Scholar]
  9. Herman J. G., Merlo A., Mao L., Lapidus R. G., Issa J. P., Davidson N. E., Sidransky D., Baylin S. B. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995 Oct 15;55(20):4525–4530. [PubMed] [Google Scholar]
  10. Huang C. L., Taki T., Adachi M., Konishi T., Higashiyama M., Kinoshita M., Hadama T., Miyake M. Mutations of p53 and K-ras genes as prognostic factors for non-small cell lung cancer. Int J Oncol. 1998 Mar;12(3):553–563. doi: 10.3892/ijo.12.3.553. [DOI] [PubMed] [Google Scholar]
  11. Kashiwabara K., Oyama T., Sano T., Fukuda T., Nakajima T. Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. Int J Cancer. 1998 Jun 19;79(3):215–220. doi: 10.1002/(sici)1097-0215(19980619)79:3<215::aid-ijc1>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  12. Kawamata N., Miller C. W., Koeffler H. P. Molecular analysis of a family of cyclin-dependent kinase inhibitor genes (p15/MTS2/INK4b and p18/INK4c) in non-small cell lung cancers. Mol Carcinog. 1995 Dec;14(4):263–268. doi: 10.1002/mc.2940140406. [DOI] [PubMed] [Google Scholar]
  13. Kinoshita I., Dosaka-Akita H., Mishina T., Akie K., Nishi M., Hiroumi H., Hommura F., Kawakami Y. Altered p16INK4 and retinoblastoma protein status in non-small cell lung cancer: potential synergistic effect with altered p53 protein on proliferative activity. Cancer Res. 1996 Dec 15;56(24):5557–5562. [PubMed] [Google Scholar]
  14. Kratzke R. A., Greatens T. M., Rubins J. B., Maddaus M. A., Niewoehner D. E., Niehans G. A., Geradts J. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res. 1996 Aug 1;56(15):3415–3420. [PubMed] [Google Scholar]
  15. Lukas J., Parry D., Aagaard L., Mann D. J., Bartkova J., Strauss M., Peters G., Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995 Jun 8;375(6531):503–506. doi: 10.1038/375503a0. [DOI] [PubMed] [Google Scholar]
  16. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966 Mar;50(3):163–170. [PubMed] [Google Scholar]
  17. Marchetti A., Buttitta F., Pellegrini S., Bertacca G., Chella A., Carnicelli V., Tognoni V., Filardo A., Angeletti C. A., Bevilacqua G. Alterations of P16 (MTS1) in node-positive non-small cell lung carcinomas. J Pathol. 1997 Feb;181(2):178–182. doi: 10.1002/(SICI)1096-9896(199702)181:2<178::AID-PATH741>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  18. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  19. Miyake M., Koyama M., Seno M., Ikeyama S. Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med. 1991 Dec 1;174(6):1347–1354. doi: 10.1084/jem.174.6.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mountain C. F. Revisions in the International System for Staging Lung Cancer. Chest. 1997 Jun;111(6):1710–1717. doi: 10.1378/chest.111.6.1710. [DOI] [PubMed] [Google Scholar]
  21. Nakagawa K., Conrad N. K., Williams J. P., Johnson B. E., Kelley M. J. Mechanism of inactivation of CDKN2 and MTS2 in non-small cell lung cancer and association with advanced stage. Oncogene. 1995 Nov 2;11(9):1843–1851. [PubMed] [Google Scholar]
  22. Nobori T., Miura K., Wu D. J., Lois A., Takabayashi K., Carson D. A. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994 Apr 21;368(6473):753–756. doi: 10.1038/368753a0. [DOI] [PubMed] [Google Scholar]
  23. Otterson G. A., Kratzke R. A., Coxon A., Kim Y. W., Kaye F. J. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene. 1994 Nov;9(11):3375–3378. [PubMed] [Google Scholar]
  24. Rak J., Mitsuhashi Y., Bayko L., Filmus J., Shirasawa S., Sasazuki T., Kerbel R. S. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 1995 Oct 15;55(20):4575–4580. [PubMed] [Google Scholar]
  25. Reed A. L., Califano J., Cairns P., Westra W. H., Jones R. M., Koch W., Ahrendt S., Eby Y., Sewell D., Nawroz H. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996 Aug 15;56(16):3630–3633. [PubMed] [Google Scholar]
  26. Reissmann P. T., Koga H., Takahashi R., Figlin R. A., Holmes E. C., Piantadosi S., Cordon-Cardo C., Slamon D. J. Inactivation of the retinoblastoma susceptibility gene in non-small-cell lung cancer. The Lung Cancer Study Group. Oncogene. 1993 Jul;8(7):1913–1919. [PubMed] [Google Scholar]
  27. Rodenhuis S., Slebos R. J. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res. 1992 May 1;52(9 Suppl):2665s–2669s. [PubMed] [Google Scholar]
  28. Rusin M. R., Okamoto A., Chorazy M., Czyzewski K., Harasim J., Spillare E. A., Hagiwara K., Hussain S. P., Xiong Y., Demetrick D. J. Intragenic mutations of the p16(INK4), p15(INK4B) and p18 genes in primary non-small-cell lung cancers. Int J Cancer. 1996 Mar 15;65(6):734–739. doi: 10.1002/(SICI)1097-0215(19960315)65:6<734::AID-IJC4>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  29. Sakaguchi M., Fujii Y., Hirabayashi H., Yoon H. E., Komoto Y., Oue T., Kusafuka T., Okada A., Matsuda H. Inversely correlated expression of p16 and Rb protein in non-small cell lung cancers: an immunohistochemical study. Int J Cancer. 1996 Feb 8;65(4):442–445. doi: 10.1002/(SICI)1097-0215(19960208)65:4<442::AID-IJC8>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  30. Serrano M., Hannon G. J., Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993 Dec 16;366(6456):704–707. doi: 10.1038/366704a0. [DOI] [PubMed] [Google Scholar]
  31. Shapiro G. I., Edwards C. D., Kobzik L., Godleski J., Richards W., Sugarbaker D. J., Rollins B. J. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res. 1995 Feb 1;55(3):505–509. [PubMed] [Google Scholar]
  32. Shimizu T., Sekiya T. Loss of heterozygosity at 9p21 loci and mutations of the MTS1 and MTS2 genes in human lung cancers. Int J Cancer. 1995 Nov 27;63(5):616–620. doi: 10.1002/ijc.2910630503. [DOI] [PubMed] [Google Scholar]
  33. Taga S., Osaki T., Ohgami A., Imoto H., Yoshimatsu T., Yoshino I., Yano K., Nakanishi R., Ichiyoshi Y., Yasumoto K. Prognostic value of the immunohistochemical detection of p16INK4 expression in nonsmall cell lung carcinoma. Cancer. 1997 Aug 1;80(3):389–395. doi: 10.1002/(sici)1097-0142(19970801)80:3<389::aid-cncr6>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  34. Takahashi T., Nau M. M., Chiba I., Birrer M. J., Rosenberg R. K., Vinocour M., Levitt M., Pass H., Gazdar A. F., Minna J. D. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989 Oct 27;246(4929):491–494. doi: 10.1126/science.2554494. [DOI] [PubMed] [Google Scholar]
  35. Tanaka H., Fujii Y., Hirabayashi H., Miyoshi S., Sakaguchi M., Yoon H. E., Matsuda H. Disruption of the RB pathway and cell-proliferative activity in non-small-cell lung cancers. Int J Cancer. 1998 Apr 17;79(2):111–115. doi: 10.1002/(sici)1097-0215(19980417)79:2<111::aid-ijc2>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  36. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  37. Volm M., Koomägi R., Mattern J. Prognostic value of p16INK4A expression in lung adenocarcinoma. Anticancer Res. 1998 Jul-Aug;18(4A):2309–2312. [PubMed] [Google Scholar]
  38. Vonlanthen S., Heighway J., Tschan M. P., Borner M. M., Altermatt H. J., Kappeler A., Tobler A., Fey M. F., Thatcher N., Yarbrough W. G. Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene. 1998 Nov 26;17(21):2779–2785. doi: 10.1038/sj.onc.1202501. [DOI] [PubMed] [Google Scholar]
  39. de Vos S., Miller C. W., Takeuchi S., Gombart A. F., Cho S. K., Koeffler H. P. Alterations of CDKN2 (p16) in non-small cell lung cancer. Genes Chromosomes Cancer. 1995 Nov;14(3):164–170. doi: 10.1002/gcc.2870140303. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES