Abstract
The increase in thyroid carcinoma post-Chernobyl has been largely confined to a specific subtype of papillary carcinoma (solid/follicular). This subtype is observed predominantly in children under 10 in unirradiated populations, but maintains a high frequency in those aged 10–15 from those areas exposed to fallout from the Chernobyl accident. The aim of this study was to link morphology with molecular biology. We examined 106 papillary carcinomas from children under the age of 15 at operation. All were examined for rearrangements of the RET oncogene by reverse transcription polymerase chain reaction (RT-PCR); a subset of these cases were also examined for mutations of the three ras oncogenes, exon 10 of the thyroid stimulating hormone receptor, associated more usually with a follicular rather than papillary morphology, and exons 5, 6, 7 and 8 of the p53 gene, commonly involved in undifferentiated thyroid carcinoma. Rearrangements of the RET oncogene were found in 44% of papillary carcinomas in which we studied fresh material; none of the tumours examined showed mutation in any of the other genes. The two rearrangements resulting from inversion of part of chromosome 10 (PTC1 and PTC3) accounted for the majority of RET rearrangements identified, with PTC1 being associated with papillary carcinomas of the classic and diffuse sclerosing variants and PTC3 with the solid/follicular variant. © 2000 Cancer Research Campaign
Keywords: thyroid cancer, Chernobyl, gene rearrangement, ref, oncogenes
Full Text
The Full Text of this article is available as a PDF (108.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baverstock K., Egloff B., Pinchera A., Ruchti C., Williams D. Thyroid cancer after Chernobyl. Nature. 1992 Sep 3;359(6390):21–22. doi: 10.1038/359021b0. [DOI] [PubMed] [Google Scholar]
- Beimfohr C., Klugbauer S., Demidchik E. P., Lengfelder E., Rabes H. M. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer. 1999 Mar 15;80(6):842–847. doi: 10.1002/(sici)1097-0215(19990315)80:6<842::aid-ijc7>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Bounacer A., Wicker R., Caillou B., Cailleux A. F., Sarasin A., Schlumberger M., Suárez H. G. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997 Sep;15(11):1263–1273. doi: 10.1038/sj.onc.1200206. [DOI] [PubMed] [Google Scholar]
- Challeton C., Bounacer A., Du Villard J. A., Caillou B., De Vathaire F., Monier R., Schlumberger M., Suárez H. G. Pattern of ras and gsp oncogene mutations in radiation-associated human thyroid tumors. Oncogene. 1995 Aug 3;11(3):601–603. [PubMed] [Google Scholar]
- Fugazzola L., Pilotti S., Pinchera A., Vorontsova T. V., Mondellini P., Bongarzone I., Greco A., Astakhova L., Butti M. G., Demidchik E. P. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 1995 Dec 1;55(23):5617–5620. [PubMed] [Google Scholar]
- Greco A., Pierotti M. A., Bongarzone I., Pagliardini S., Lanzi C., Della Porta G. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene. 1992 Feb;7(2):237–242. [PubMed] [Google Scholar]
- Harach H. R., Williams E. D. Childhood thyroid cancer in England and Wales. Br J Cancer. 1995 Sep;72(3):777–783. doi: 10.1038/bjc.1995.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillebrandt S., Streffer C., Demidchik E. P., Biko J., Reiners C. Polymorphisms in the p53 gene in thyroid tumours and blood samples of children from areas in Belarus. Mutat Res. 1997 Nov 28;381(2):201–207. doi: 10.1016/s0027-5107(97)00169-3. [DOI] [PubMed] [Google Scholar]
- Ito T., Seyama T., Iwamoto K. S., Hayashi T., Mizuno T., Tsuyama N., Dohi K., Nakamura N., Akiyama M. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res. 1993 Jul 1;53(13):2940–2943. [PubMed] [Google Scholar]
- Ito T., Seyama T., Iwamoto K. S., Mizuno T., Tronko N. D., Komissarenko I. V., Cherstovoy E. D., Satow Y., Takeichi N., Dohi K. Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet. 1994 Jul 23;344(8917):259–259. doi: 10.1016/s0140-6736(94)93024-4. [DOI] [PubMed] [Google Scholar]
- Ito T., Seyama T., Mizuno T., Tsuyama N., Hayashi T., Hayashi Y., Dohi K., Nakamura N., Akiyama M. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 1992 Mar 1;52(5):1369–1371. [PubMed] [Google Scholar]
- Jacob P., Goulko G., Heidenreich W. F., Likhtarev I., Kairo I., Tronko N. D., Bogdanova T. I., Kenigsberg J., Buglova E., Drozdovitch V. Thyroid cancer risk to children calculated. Nature. 1998 Mar 5;392(6671):31–32. doi: 10.1038/32076. [DOI] [PubMed] [Google Scholar]
- Jhiang S. M., Sagartz J. E., Tong Q., Parker-Thornburg J., Capen C. C., Cho J. Y., Xing S., Ledent C. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996 Jan;137(1):375–378. doi: 10.1210/endo.137.1.8536638. [DOI] [PubMed] [Google Scholar]
- Kazakov V. S., Demidchik E. P., Astakhova L. N. Thyroid cancer after Chernobyl. Nature. 1992 Sep 3;359(6390):21–21. doi: 10.1038/359021a0. [DOI] [PubMed] [Google Scholar]
- Klugbauer S., Demidchik E. P., Lengfelder E., Rabes H. M. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res. 1998 Jan 15;58(2):198–203. [PubMed] [Google Scholar]
- Klugbauer S., Lengfelder E., Demidchik E. P., Rabes H. M. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene. 1995 Dec 21;11(12):2459–2467. [PubMed] [Google Scholar]
- Lemoine N. R., Mayall E. S., Wyllie F. S., Williams E. D., Goyns M., Stringer B., Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989 Feb;4(2):159–164. [PubMed] [Google Scholar]
- Likhtarev I. A., Sobolev B. G., Kairo I. A., Tronko N. D., Bogdanova T. I., Oleinic V. A., Epshtein E. V., Beral V. Thyroid cancer in the Ukraine. Nature. 1995 Jun 1;375(6530):365–365. doi: 10.1038/375365a0. [DOI] [PubMed] [Google Scholar]
- Lohmann D., Pütz B., Reich U., Böhm J., Präuer H., Höfler H. Mutational spectrum of the p53 gene in human small-cell lung cancer and relationship to clinicopathological data. Am J Pathol. 1993 Mar;142(3):907–915. [PMC free article] [PubMed] [Google Scholar]
- Manenti G., Pilotti S., Re F. C., Della Porta G., Pierotti M. A. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer. 1994;30A(7):987–993. doi: 10.1016/0959-8049(94)90130-9. [DOI] [PubMed] [Google Scholar]
- Nikiforov Y. E., Nikiforova M. N., Gnepp D. R., Fagin J. A. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene. 1996 Aug 15;13(4):687–693. [PubMed] [Google Scholar]
- Nikiforov Y. E., Rowland J. M., Bove K. E., Monforte-Munoz H., Fagin J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997 May 1;57(9):1690–1694. [PubMed] [Google Scholar]
- Ohno M., Endo T., Ohta K., Gunji K., Onaya T. Point mutations in the thyrotropin receptor in human thyroid tumors. Thyroid. 1995 Apr;5(2):97–100. doi: 10.1089/thy.1995.5.97. [DOI] [PubMed] [Google Scholar]
- Parma J., Van Sande J., Swillens S., Tonacchera M., Dumont J., Vassart G. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades. Mol Endocrinol. 1995 Jun;9(6):725–733. doi: 10.1210/mend.9.6.8592518. [DOI] [PubMed] [Google Scholar]
- Powell D. J., Jr, Russell J., Nibu K., Li G., Rhee E., Liao M., Goldstein M., Keane W. M., Santoro M., Fusco A. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 1998 Dec 1;58(23):5523–5528. [PubMed] [Google Scholar]
- Russo D., Arturi F., Schlumberger M., Caillou B., Monier R., Filetti S., Suárez H. G. Activating mutations of the TSH receptor in differentiated thyroid carcinomas. Oncogene. 1995 Nov 2;11(9):1907–1911. [PubMed] [Google Scholar]
- Sankaranarayanan K. Ionizing radiation and genetic risks. III. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mutat Res. 1991 Jul;258(1):75–97. doi: 10.1016/0165-1110(91)90029-u. [DOI] [PubMed] [Google Scholar]
- Santoro M., Carlomagno F., Hay I. D., Herrmann M. A., Grieco M., Melillo R., Pierotti M. A., Bongarzone I., Della Porta G., Berger N. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992 May;89(5):1517–1522. doi: 10.1172/JCI115743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santoro M., Chiappetta G., Cerrato A., Salvatore D., Zhang L., Manzo G., Picone A., Portella G., Santelli G., Vecchio G. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996 Apr 18;12(8):1821–1826. [PubMed] [Google Scholar]
- Shi Y. F., Zou M. J., Schmidt H., Juhasz F., Stensky V., Robb D., Farid N. R. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 1991 May 15;51(10):2690–2693. [PubMed] [Google Scholar]
- Smida J., Salassidis K., Hieber L., Zitzelsberger H., Kellerer A. M., Demidchik E. P., Negele T., Spelsberg F., Lengfelder E., Werner M. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int J Cancer. 1999 Jan 5;80(1):32–38. doi: 10.1002/(sici)1097-0215(19990105)80:1<32::aid-ijc7>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Smida J., Zitzelsberger H., Kellerer A. M., Lehmann L., Minkus G., Negele T., Spelsberg F., Hieber L., Demidchik E. P., Lengfelder E. p53 mutations in childhood thyroid tumours from Belarus and in thyroid tumours without radiation history. Int J Cancer. 1997 Dec 10;73(6):802–807. doi: 10.1002/(sici)1097-0215(19971210)73:6<802::aid-ijc5>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Suarez H. G., du Villard J. A., Severino M., Caillou B., Schlumberger M., Tubiana M., Parmentier C., Monier R. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990 Apr;5(4):565–570. [PubMed] [Google Scholar]
- Suchy B., Waldmann V., Klugbauer S., Rabes H. M. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br J Cancer. 1998 Mar;77(6):952–955. doi: 10.1038/bjc.1998.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugg S. L., Ezzat S., Rosen I. B., Freeman J. L., Asa S. L. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 1998 Nov;83(11):4116–4122. doi: 10.1210/jcem.83.11.5271. [DOI] [PubMed] [Google Scholar]
- Viglietto G., Chiappetta G., Martinez-Tello F. J., Fukunaga F. H., Tallini G., Rigopoulou D., Visconti R., Mastro A., Santoro M., Fusco A. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995 Sep 21;11(6):1207–1210. [PubMed] [Google Scholar]
- Waldmann V., Rabes H. M. Absence of G(s)alpha gene mutations in childhood thyroid tumors after Chernobyl in contrast to sporadic adult thyroid neoplasia. Cancer Res. 1997 Jun 15;57(12):2358–2361. [PubMed] [Google Scholar]
- Williams G. H., Rooney S., Thomas G. A., Cummins G., Williams E. D. RET activation in adult and childhood papillary thyroid carcinoma using a reverse transcriptase-n-polymerase chain reaction approach on archival-nested material. Br J Cancer. 1996 Aug;74(4):585–589. doi: 10.1038/bjc.1996.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woessner S., Solé F., Pérez-Losada A., Florensa L., Vilá R. M. Trisomy 12 is a rare cytogenetic finding in typical chronic lymphocytic leukemia. Leuk Res. 1996 May;20(5):369–374. doi: 10.1016/0145-2126(96)84956-3. [DOI] [PubMed] [Google Scholar]
- Wright P. A., Williams E. D., Lemoine N. R., Wynford-Thomas D. Radiation-associated and 'spontaneous' human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene. 1991 Mar;6(3):471–473. [PubMed] [Google Scholar]