Abstract
Abnormally low intramuscular glutamate and glutathione (GSH) levels and/or a decreased muscular uptake of glutamate by the skeletal muscle tissue have previously been found in malignant diseases and simian immunodeficiency virus (SIV) infection and may contribute to the development of cachexia. We tested the hypothesis that an impaired mitochondrial energy metabolism may compromise the Na+-dependent glutamate transport. A randomized double-blind clinical trial was designed to study the effects of L -carnitine, i.e. an agent known to enhance mitochondrial integrity and function, on the glutamate transport and plasma glutamate level of cancer patients. The effect of carnitine on the intramuscular glutamate and GSH levels was examined in complementary experiments with tumour-bearing mice. In the mice, L -carnitine treatment ameliorated indeed the tumour-induced decrease in muscular glutamate and GSH levels and the increase in plasma glutamate levels. The carnitine-treated group in the randomized clinical study showed also a significant decrease in the plasma glutamate levels but only a moderate and statistically not significant increase in the relative glutamate uptake in the lower extremities. Further studies may be warranted to determine the effect of L -carnitine on the intramuscular GSH levels in cancer patients. © 2000 Cancer Research Campaign
Keywords: carnitine, glutathione, glutamate transport, amino acid exchange rates
Full Text
The Full Text of this article is available as a PDF (119.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
- Brennan M. F. Uncomplicated starvation versus cancer cachexia. Cancer Res. 1977 Jul;37(7 Pt 2):2359–2364. [PubMed] [Google Scholar]
- Dodson W. L., Sachan D. S., Krauss S., Hanna W. Alterations of serum and urinary carnitine profiles in cancer patients: hypothesis of possible significance. J Am Coll Nutr. 1989 Apr;8(2):133–142. doi: 10.1080/07315724.1989.10720288. [DOI] [PubMed] [Google Scholar]
- Dröge W., Eck H. P., Betzler M., Schlag P., Drings P., Ebert W. Plasma glutamate concentration and lymphocyte activity. J Cancer Res Clin Oncol. 1988;114(2):124–128. doi: 10.1007/BF00417824. [DOI] [PubMed] [Google Scholar]
- Dröge W., Eck H. P., Näher H., Pekar U., Daniel V. Abnormal amino-acid concentrations in the blood of patients with acquired immunodeficiency syndrome (AIDS) may contribute to the immunological defect. Biol Chem Hoppe Seyler. 1988 Mar;369(3):143–148. doi: 10.1515/bchm3.1988.369.1.143. [DOI] [PubMed] [Google Scholar]
- Eck H. P., Drings P., Dröge W. Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol. 1989;115(6):571–574. doi: 10.1007/BF00391360. [DOI] [PubMed] [Google Scholar]
- Eck H. P., Stahl-Hennig C., Hunsmann G., Dröge W. Metabolic disorder as early consequence of simian immunodeficiency virus infection in rhesus macaques. Lancet. 1991 Aug 10;338(8763):346–347. doi: 10.1016/0140-6736(91)90482-5. [DOI] [PubMed] [Google Scholar]
- Fox B. A., Spiess P. J., Kasid A., Puri R., Mulé J. J., Weber J. S., Rosenberg S. A. In vitro and in vivo antitumor properties of a T-cell clone generated from murine tumor-infiltrating lymphocytes. J Biol Response Mod. 1990 Oct;9(5):499–511. [PubMed] [Google Scholar]
- Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
- Hack V., Gross A., Kinscherf R., Bockstette M., Fiers W., Berke G., Dröge W. Abnormal glutathione and sulfate levels after interleukin 6 treatment and in tumor-induced cachexia. FASEB J. 1996 Aug;10(10):1219–1226. doi: 10.1096/fasebj.10.10.8751725. [DOI] [PubMed] [Google Scholar]
- Hack V., Schmid D., Breitkreutz R., Stahl-Henning C., Drings P., Kinscherf R., Taut F., Holm E., Dröge W. Cystine levels, cystine flux, and protein catabolism in cancer cachexia, HIV/SIV infection, and senescence. FASEB J. 1997 Jan;11(1):84–92. doi: 10.1096/fasebj.11.1.9034170. [DOI] [PubMed] [Google Scholar]
- Hack V., Stütz O., Kinscherf R., Schykowski M., Kellerer M., Holm E., Dröge W. Elevated venous glutamate levels in (pre)catabolic conditions result at least partly from a decreased glutamate transport activity. J Mol Med (Berl) 1996 Jun;74(6):337–343. doi: 10.1007/BF00207511. [DOI] [PubMed] [Google Scholar]
- Hagen T. M., Ingersoll R. T., Wehr C. M., Lykkesfeldt J., Vinarsky V., Bartholomew J. C., Song M. H., Ames B. N. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9562–9566. doi: 10.1073/pnas.95.16.9562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn L. W. L-glutamate transport in internally dialyzed barnacle muscle fibers. Am J Physiol. 1989 Sep;257(3 Pt 1):C442–C450. doi: 10.1152/ajpcell.1989.257.3.C442. [DOI] [PubMed] [Google Scholar]
- Kinscherf R., Hack V., Fischbach T., Friedmann B., Weiss C., Edler L., Bärtsch P., Dröge W. Low plasma glutamine in combination with high glutamate levels indicate risk for loss of body cell mass in healthy individuals: the effect of N-acetyl-cysteine. J Mol Med (Berl) 1996 Jul;74(7):393–400. doi: 10.1007/BF00210633. [DOI] [PubMed] [Google Scholar]
- Low S. Y., Rennie M. J., Taylor P. M. Sodium-dependent glutamate transport in cultured rat myotubes increases after glutamine deprivation. FASEB J. 1994 Jan;8(1):127–131. doi: 10.1096/fasebj.8.1.7905447. [DOI] [PubMed] [Google Scholar]
- McFalls E. O., Paulson D. J., Gilbert E. F., Shug A. L. Carnitine protection against adriamycin-induced cardiomyopathy in rats. Life Sci. 1986 Feb 10;38(6):497–505. doi: 10.1016/0024-3205(86)90028-7. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lipid Res. 1976 May;17(3):277–281. [PubMed] [Google Scholar]
- McGivan J. D., Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikula P., Ruohola H., Alhonen-Hongisto L., Jänne J. Carnitine prevents the early mitochondrial damage induced by methylglyoxal bis(guanylhydrazone) in L1210 leukaemia cells. Biochem J. 1985 Jun 1;228(2):513–516. doi: 10.1042/bj2280513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Pisters P. W., Pearlstone D. B. Protein and amino acid metabolism in cancer cachexia: investigative techniques and therapeutic interventions. Crit Rev Clin Lab Sci. 1993;30(3):223–272. doi: 10.3109/10408369309084669. [DOI] [PubMed] [Google Scholar]
- Plaitakis A., Caroscio J. T. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1987 Nov;22(5):575–579. doi: 10.1002/ana.410220503. [DOI] [PubMed] [Google Scholar]
- Rebouche C. J., Paulson D. J. Carnitine metabolism and function in humans. Annu Rev Nutr. 1986;6:41–66. doi: 10.1146/annurev.nu.06.070186.000353. [DOI] [PubMed] [Google Scholar]
- Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
- Roth E., Funovics J., Mühlbacher F., Schemper M., Mauritz W., Sporn P., Fritsch A. Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clin Nutr. 1982 Mar;1(1):25–41. doi: 10.1016/0261-5614(82)90004-8. [DOI] [PubMed] [Google Scholar]
- Rössle C., Pichard C., Roulet M., Bergström J., Fürst P. Muscle carnitine pools in cancer patients. Clin Nutr. 1989 Dec;8(6):341–346. doi: 10.1016/0261-5614(89)90010-1. [DOI] [PubMed] [Google Scholar]
- Shaw J. H., Wolfe R. R. Glucose and urea kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion, parenteral feeding, and surgical resection. Surgery. 1987 Feb;101(2):181–191. [PubMed] [Google Scholar]
- Striebel J. P., Saeger H. D., Ritz R., Leweling H., Holm E. Aminosäurenaufnahme und -abgabe kolorektaler Karzinome des Menschen. Infusionsther Klin Ernahr. 1986 Apr;13(2):92–104. [PubMed] [Google Scholar]
- Tayek J. A. A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr. 1992 Aug;11(4):445–456. doi: 10.1080/07315724.1992.10718249. [DOI] [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W., Aulick L. H. Metabolic changes in burned patients. Surg Clin North Am. 1978 Dec;58(6):1173–1187. doi: 10.1016/s0039-6109(16)41685-3. [DOI] [PubMed] [Google Scholar]
- Winter B. K., Fiskum G., Gallo L. L. Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer. 1995 Nov;72(5):1173–1179. doi: 10.1038/bjc.1995.482. [DOI] [PMC free article] [PubMed] [Google Scholar]