Abstract
We recently showed that severe hypoxia was not universally present adjacent to necrosis in human glioma xenografts and spheroids established from the M059K, M006, M006X, M006XLo and M010b cell lines. Using these glioma models, we wished to test whether oxygen serves as a regulator of cellular VEGF expression in situ. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect vascular endothelial growth factor (VEGF) mRNA and protein expression in sections of glioma xenografts and spheroids in which hypoxic regions and regions with well-oxygenated necrosis were identified on contiguous sections by use of the hypoxia-specific marker,3H-misonidazole. Independent validation of the presence of radiobiologically hypoxic cells in M006 xenografts was undertaken using the comet assay. Northern blotting analyses of monolayer cells demonstrated significant up-regulation of VEGF mRNA in the M006X line at oxygen concentrations of 6% and below. ISH analysis of VEGF mRNA showed unexpectedly strong staining for VEGF mRNA across the entire viable rim of M006X and M006XLo glioma spheroids. Similarly, in virtually all xenograft tumours of the M059K, M006 and M010b lines, VEGF ISH showed similar staining across all regions of healthy cells up to the border of necrosis. Only in one M006X tumour was there a suggestion of increased VEGF expression in cells adjacent to necrosis. IHC for VEGF showed good concordance with the ISH results. IHC analysis of the VEGF receptor flt-1 showed strong tumour cell staining in M006XLo glioma cells. In human glioma spheroids and xenograft tumours, regions of severe hypoxia do not correspond to areas of up-regulated VEGF expression; in fact, VEGF expression is quite uniform. Furthermore, this and our previous study demonstrate that levels of VEGF expression vary among sublines (M006, M006X and M006XLo) derived from a single human glioma specimen. © 2000 Cancer Research Campaign
Keywords: hypoxia, glioma, vascular endothelial growth factor, misonidazole, flt-1
Full Text
The Full Text of this article is available as a PDF (501.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allalunis-Turner M. J., Day R. S., 3rd, McKean J. D., Petruk K. C., Allen P. B., Aronyk K. E., Weir B. K., Huyser-Wierenga D., Fulton D. S., Urtasun R. C. Glutathione levels and chemosensitizing effects of buthionine sulfoximine in human malignant glioma cells. J Neurooncol. 1991 Oct;11(2):157–164. doi: 10.1007/BF02390175. [DOI] [PubMed] [Google Scholar]
- Allalunis-Turner M. J., Franko A. J., Parliament M. B. Modulation of oxygen consumption rate and vascular endothelial growth factor mRNA expression in human malignant glioma cells by hypoxia. Br J Cancer. 1999 Apr;80(1-2):104–109. doi: 10.1038/sj.bjc.6690328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berse B., Brown L. F., Van de Water L., Dvorak H. F., Senger D. R. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell. 1992 Feb;3(2):211–220. doi: 10.1091/mbc.3.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boocock C. A., Charnock-Jones D. S., Sharkey A. M., McLaren J., Barker P. J., Wright K. A., Twentyman P. R., Smith S. K. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995 Apr 5;87(7):506–516. doi: 10.1093/jnci/87.7.506. [DOI] [PubMed] [Google Scholar]
- Brogi E., Wu T., Namiki A., Isner J. M. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation. 1994 Aug;90(2):649–652. doi: 10.1161/01.cir.90.2.649. [DOI] [PubMed] [Google Scholar]
- Chin K., Kurashima Y., Ogura T., Tajiri H., Yoshida S., Esumi H. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene. 1997 Jul 24;15(4):437–442. doi: 10.1038/sj.onc.1201201. [DOI] [PubMed] [Google Scholar]
- Damert A., Machein M., Breier G., Fujita M. Q., Hanahan D., Risau W., Plate K. H. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res. 1997 Sep 1;57(17):3860–3864. [PubMed] [Google Scholar]
- Frank S., Hübner G., Breier G., Longaker M. T., Greenhalgh D. G., Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem. 1995 May 26;270(21):12607–12613. doi: 10.1074/jbc.270.21.12607. [DOI] [PubMed] [Google Scholar]
- Franko A. J., Parliament M. B., Allalunis-Turner M. J., Wolokoff B. G. Variable presence of hypoxia in M006 human glioma spheroids and in spheroids and xenografts of clonally derived sublines. Br J Cancer. 1998 Nov;78(10):1261–1268. doi: 10.1038/bjc.1998.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Germano I. M., Ito M., Cho K. G., Hoshino T., Davis R. L., Wilson C. B. Correlation of histopathological features and proliferative potential of gliomas. J Neurosurg. 1989 May;70(5):701–706. doi: 10.3171/jns.1989.70.5.0701. [DOI] [PubMed] [Google Scholar]
- Gnarra J. R., Zhou S., Merrill M. J., Wagner J. R., Krumm A., Papavassiliou E., Oldfield E. H., Klausner R. D., Linehan W. M. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10589–10594. doi: 10.1073/pnas.93.20.10589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg M. A., Schneider T. J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994 Feb 11;269(6):4355–4359. [PubMed] [Google Scholar]
- Hochachka P. W., Buck L. T., Doll C. J., Land S. C. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9493–9498. doi: 10.1073/pnas.93.18.9493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iliopoulos O., Levy A. P., Jiang C., Kaelin W. G., Jr, Goldberg M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10595–10599. doi: 10.1073/pnas.93.20.10595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang B. H., Semenza G. L., Bauer C., Marti H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996 Oct;271(4 Pt 1):C1172–C1180. doi: 10.1152/ajpcell.1996.271.4.C1172. [DOI] [PubMed] [Google Scholar]
- Kennedy A. S., Raleigh J. A., Perez G. M., Calkins D. P., Thrall D. E., Novotny D. B., Varia M. A. Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys. 1997 Mar 1;37(4):897–905. doi: 10.1016/s0360-3016(96)00539-1. [DOI] [PubMed] [Google Scholar]
- Koch C. J., Evans S. M., Lord E. M. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)a cet amide] : analysis of drug adducts by fluorescent antibodies vs bound radioactivity. Br J Cancer. 1995 Oct;72(4):869–874. doi: 10.1038/bjc.1995.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch C. J., Howell R. L., Biaglow J. E. Ascorbate anion potentiates cytotoxicity of nitro-aromatic compounds under hypoxic and anoxic conditions. Br J Cancer. 1979 Mar;39(3):321–329. doi: 10.1038/bjc.1979.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leith J. T., Michelson S. Secretion rates and levels of vascular endothelial growth factor in clone A or HCT-8 human colon tumour cells as a function of oxygen concentration. Cell Prolif. 1995 Aug;28(8):415–430. doi: 10.1111/j.1365-2184.1995.tb00082.x. [DOI] [PubMed] [Google Scholar]
- Levy A. P., Levy N. S., Goldberg M. A. Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem. 1996 Oct 11;271(41):25492–25497. doi: 10.1074/jbc.271.41.25492. [DOI] [PubMed] [Google Scholar]
- Levy A. P., Levy N. S., Iliopoulos O., Jiang C., Kaplin W. G., Jr, Goldberg M. A. Regulation of vascular endothelial growth factor by hypoxia and its modulation by the von Hippel-Lindau tumor suppressor gene. Kidney Int. 1997 Feb;51(2):575–578. doi: 10.1038/ki.1997.82. [DOI] [PubMed] [Google Scholar]
- Levy A. P., Levy N. S., Loscalzo J., Calderone A., Takahashi N., Yeo K. T., Koren G., Colucci W. S., Goldberg M. A. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res. 1995 May;76(5):758–766. doi: 10.1161/01.res.76.5.758. [DOI] [PubMed] [Google Scholar]
- Levy A. P., Levy N. S., Wegner S., Goldberg M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995 Jun 2;270(22):13333–13340. doi: 10.1074/jbc.270.22.13333. [DOI] [PubMed] [Google Scholar]
- Li J., Perrella M. A., Tsai J. C., Yet S. F., Hsieh C. M., Yoshizumi M., Patterson C., Endege W. O., Zhou F., Lee M. E. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem. 1995 Jan 6;270(1):308–312. doi: 10.1074/jbc.270.1.308. [DOI] [PubMed] [Google Scholar]
- Liu B., Earl H. M., Baban D., Shoaibi M., Fabra A., Kerr D. J., Seymour L. W. Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun. 1995 Dec 26;217(3):721–727. doi: 10.1006/bbrc.1995.2832. [DOI] [PubMed] [Google Scholar]
- Olive P. L., Horsman M. R., Grau C., Overgaard J. Detection of hypoxic cells in a C3H mouse mammary carcinoma using the comet assay. Br J Cancer. 1997;76(6):694–699. doi: 10.1038/bjc.1997.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olive P. L., Johnston P. J., Banáth J. P., Durand R. E. The comet assay: a new method to examine heterogeneity associated with solid tumors. Nat Med. 1998 Jan;4(1):103–105. doi: 10.1038/nm0198-103. [DOI] [PubMed] [Google Scholar]
- Parliament M. B., Franko A. J., Allalunis-Turner M. J., Mielke B. W., Santos C. L., Wolokoff B. G., Mercer J. R. Anomalous patterns of nitroimidazole binding adjacent to necrosis in human glioma xenografts: possible role of decreased oxygen consumption. Br J Cancer. 1997;75(3):311–318. doi: 10.1038/bjc.1997.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plate K. H., Breier G., Weich H. A., Mennel H. D., Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer. 1994 Nov 15;59(4):520–529. doi: 10.1002/ijc.2910590415. [DOI] [PubMed] [Google Scholar]
- Plate K. H., Breier G., Weich H. A., Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992 Oct 29;359(6398):845–848. doi: 10.1038/359845a0. [DOI] [PubMed] [Google Scholar]
- Raleigh J. A., Calkins-Adams D. P., Rinker L. H., Ballenger C. A., Weissler M. C., Fowler W. C., Jr, Novotny D. B., Varia M. A. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 1998 Sep 1;58(17):3765–3768. [PubMed] [Google Scholar]
- Ryuto M., Ono M., Izumi H., Yoshida S., Weich H. A., Kohno K., Kuwano M. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem. 1996 Nov 8;271(45):28220–28228. doi: 10.1074/jbc.271.45.28220. [DOI] [PubMed] [Google Scholar]
- Shima D. T., Deutsch U., D'Amore P. A. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett. 1995 Aug 21;370(3):203–208. doi: 10.1016/0014-5793(95)00831-s. [DOI] [PubMed] [Google Scholar]
- Shweiki D., Itin A., Soffer D., Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992 Oct 29;359(6398):843–845. doi: 10.1038/359843a0. [DOI] [PubMed] [Google Scholar]
- Stein I., Neeman M., Shweiki D., Itin A., Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol. 1995 Oct;15(10):5363–5368. doi: 10.1128/mcb.15.10.5363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urtasun R. C., Koch C. J., Franko A. J., Raleigh J. A., Chapman J. D. A novel technique for measuring human tissue pO2 at the cellular level. Br J Cancer. 1986 Sep;54(3):453–457. doi: 10.1038/bjc.1986.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaisman N., Gospodarowicz D., Neufeld G. Characterization of the receptors for vascular endothelial growth factor. J Biol Chem. 1990 Nov 15;265(32):19461–19466. [PubMed] [Google Scholar]
- Waleh N. S., Brody M. D., Knapp M. A., Mendonca H. L., Lord E. M., Koch C. J., Laderoute K. R., Sutherland R. M. Mapping of the vascular endothelial growth factor-producing hypoxic cells in multicellular tumor spheroids using a hypoxia-specific marker. Cancer Res. 1995 Dec 15;55(24):6222–6226. [PubMed] [Google Scholar]
- Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White F. C., Carroll S. M., Kamps M. P. VEGF mRNA is reversibly stabilized by hypoxia and persistently stabilized in VEGF-overexpressing human tumor cell lines. Growth Factors. 1995;12(4):289–301. doi: 10.3109/08977199509028967. [DOI] [PubMed] [Google Scholar]
- Wizigmann-Voos S., Breier G., Risau W., Plate K. H. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995 Mar 15;55(6):1358–1364. [PubMed] [Google Scholar]