Abstract
In vivo transfer of wild-type (wt) p53 gene via a recombinant adenovirus has been proposed to induce apoptosis and increase radiosensitivity in several human carcinoma models. In the context of combining p53 gene transfer and irradiation, we investigated the consequences of adenoviral-mediated wtp53 gene transfer on the cell cycle and radiosensitivity of a human head and neck squamous cell carcinoma line (SCC97) with a p53 mutated phenotype. We showed that ectopic expression of wtp53 in SCC97 cells resulted in a prolonged G1 arrest, associated with an increased expression of the cyclin-dependent kinase inhibitor WAF1/p21 target gene. A transient arrest in G2 but not in G1 was observed after irradiation. This G2 arrest was permanent when exponentially growing cells were transduced by Ad5CMV- p53 (RPR/INGN201) immediately after irradiation with 5 or 10 Gy. Moreover, levels of cyclins A2 and B1, which are known to regulate the G2/M transition, dramatically decreased as cells arrived in G2, whereas maximal levels of expression were observed in the absence of wtp53. In conclusion, adenoviral mediated transfer of wtp53 in irradiated SCC97 cells, which are mutated for p53, appeared to increase WAF1/p21 expression and decrease levels of the mitotic cyclins A2 and B1. These observations suggest that the G2 arrest resulted from a p53-dependent premature inactivation of the mitosis promoting factor. © 2000 Cancer Research Campaign
Keywords: p53 gene transfer, cell cycle arrest, cyclius, adenovirus vector
Full Text
The Full Text of this article is available as a PDF (154.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal M. L., Agarwal A., Taylor W. R., Stark G. R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8493–8497. doi: 10.1073/pnas.92.18.8493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allday M. J., Inman G. J., Crawford D. H., Farrell P. J. DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J. 1995 Oct 16;14(20):4994–5005. doi: 10.1002/j.1460-2075.1995.tb00182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aloni-Grinstein R., Schwartz D., Rotter V. Accumulation of wild-type p53 protein upon gamma-irradiation induces a G2 arrest-dependent immunoglobulin kappa light chain gene expression. EMBO J. 1995 Apr 3;14(7):1392–1401. doi: 10.1002/j.1460-2075.1995.tb07125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azzam E. I., de Toledo S. M., Pykett M. J., Nagasawa H., Little J. B. CDC2 is down-regulated by ionizing radiation in a p53-dependent manner. Cell Growth Differ. 1997 Nov;8(11):1161–1169. [PubMed] [Google Scholar]
- Chmura S. J., Mauceri H. J., Advani S., Heimann R., Beckett M. A., Nodzenski E., Quintans J., Kufe D. W., Weichselbaum R. R. Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res. 1997 Oct 1;57(19):4340–4347. [PubMed] [Google Scholar]
- Clayman G. L., el-Naggar A. K., Lippman S. M., Henderson Y. C., Frederick M., Merritt J. A., Zumstein L. A., Timmons T. M., Liu T. J., Ginsberg L. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998 Jun;16(6):2221–2232. doi: 10.1200/JCO.1998.16.6.2221. [DOI] [PubMed] [Google Scholar]
- Deng C., Zhang P., Harper J. W., Elledge S. J., Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995 Aug 25;82(4):675–684. doi: 10.1016/0092-8674(95)90039-x. [DOI] [PubMed] [Google Scholar]
- Dimri G. P., Nakanishi M., Desprez P. Y., Smith J. R., Campisi J. Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol Cell Biol. 1996 Jun;16(6):2987–2997. doi: 10.1128/mcb.16.6.2987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulić V., Stein G. H., Far D. F., Reed S. I. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol. 1998 Jan;18(1):546–557. doi: 10.1128/mcb.18.1.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flaman J. M., Frebourg T., Moreau V., Charbonnier F., Martin C., Chappuis P., Sappino A. P., Limacher I. M., Bron L., Benhattar J. A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3963–3967. doi: 10.1073/pnas.92.9.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friend S. p53: a glimpse at the puppet behind the shadow play. Science. 1994 Jul 15;265(5170):334–335. doi: 10.1126/science.8023155. [DOI] [PubMed] [Google Scholar]
- Gallardo D., Drazan K. E., McBride W. H. Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res. 1996 Nov 1;56(21):4891–4893. [PubMed] [Google Scholar]
- Guillouf C., Rosselli F., Krishnaraju K., Moustacchi E., Hoffman B., Liebermann D. A. p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene. 1995 Jun 1;10(11):2263–2270. [PubMed] [Google Scholar]
- Han Z., Chatterjee D., He D. M., Early J., Pantazis P., Wyche J. H., Hendrickson E. A. Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation. Mol Cell Biol. 1995 Nov;15(11):5849–5857. doi: 10.1128/mcb.15.11.5849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermeking H., Lengauer C., Polyak K., He T. C., Zhang L., Thiagalingam S., Kinzler K. W., Vogelstein B. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997 Dec;1(1):3–11. doi: 10.1016/s1097-2765(00)80002-7. [DOI] [PubMed] [Google Scholar]
- Jin P., Gu Y., Morgan D. O. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol. 1996 Aug;134(4):963–970. doi: 10.1083/jcb.134.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao G. D., McKenna W. G., Maity A., Blank K., Muschel R. J. Cyclin B1 availability is a rate-limiting component of the radiation-induced G2 delay in HeLa cells. Cancer Res. 1997 Feb 15;57(4):753–758. [PubMed] [Google Scholar]
- Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
- Maity A., McKenna W. G., Muschel R. J. Evidence for post-transcriptional regulation of cyclin B1 mRNA in the cell cycle and following irradiation in HeLa cells. EMBO J. 1995 Feb 1;14(3):603–609. doi: 10.1002/j.1460-2075.1995.tb07036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muschel R. J., Zhang H. B., McKenna W. G. Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in HeLa cells. Cancer Res. 1993 Mar 1;53(5):1128–1135. [PubMed] [Google Scholar]
- Müller R. Transcriptional regulation during the mammalian cell cycle. Trends Genet. 1995 May;11(5):173–178. doi: 10.1016/S0168-9525(00)89039-3. [DOI] [PubMed] [Google Scholar]
- Niculescu A. B., 3rd, Chen X., Smeets M., Hengst L., Prives C., Reed S. I. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol. 1998 Jan;18(1):629–643. doi: 10.1128/mcb.18.1.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pellegata N. S., Antoniono R. J., Redpath J. L., Stanbridge E. J. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15209–15214. doi: 10.1073/pnas.93.26.15209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powell S. N., DeFrank J. S., Connell P., Eogan M., Preffer F., Dombkowski D., Tang W., Friend S. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 1995 Apr 15;55(8):1643–1648. [PubMed] [Google Scholar]
- Sherr C. J. Cancer cell cycles. Science. 1996 Dec 6;274(5293):1672–1677. doi: 10.1126/science.274.5293.1672. [DOI] [PubMed] [Google Scholar]
- Skladanowski A., Larsen A. K. Expression of wild-type p53 increases etoposide cytotoxicity in M1 myeloid leukemia cells by facilitated G2 to M transition: implications for gene therapy. Cancer Res. 1997 Mar 1;57(5):818–823. [PubMed] [Google Scholar]
- Stack J. H., Newport J. W. Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development. 1997 Aug;124(16):3185–3195. doi: 10.1242/dev.124.16.3185. [DOI] [PubMed] [Google Scholar]
- Stewart N., Hicks G. G., Paraskevas F., Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene. 1995 Jan 5;10(1):109–115. [PubMed] [Google Scholar]
- Townsley F. M., Ruderman J. V. Proteolytic ratchets that control progression through mitosis. Trends Cell Biol. 1998 Jun;8(6):238–244. doi: 10.1016/s0962-8924(98)01268-9. [DOI] [PubMed] [Google Scholar]
- Winters Z. E., Ongkeko W. M., Harris A. L., Norbury C. J. p53 regulates Cdc2 independently of inhibitory phosphorylation to reinforce radiation-induced G2 arrest in human cells. Oncogene. 1998 Aug 13;17(6):673–684. doi: 10.1038/sj.onc.1201991. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Yoshida M., Ono K., Fujita T., Ohtani-Fujita N., Sakai T., Nikaido T. Effect of tumor suppressors on cell cycle-regulatory genes: RB suppresses p34cdc2 expression and normal p53 suppresses cyclin A expression. Exp Cell Res. 1994 Jan;210(1):94–101. doi: 10.1006/excr.1994.1014. [DOI] [PubMed] [Google Scholar]
- Zhang W. W., Alemany R., Wang J., Koch P. E., Ordonez N. G., Roth J. A. Safety evaluation of Ad5CMV-p53 in vitro and in vivo. Hum Gene Ther. 1995 Feb;6(2):155–164. doi: 10.1089/hum.1995.6.2-155. [DOI] [PubMed] [Google Scholar]
