Abstract
Tissue from 54 histologically-identified basal cell carcinomas of the skin was obtained at surgery and assayed using a combination of functional and immunochemical procedures for matrix metalloproteinases (MMPs) with collagenolytic activity and for MMPs with gelatinolytic activity. Collagenolytic enzymes included MMP-1 (interstitial collagenase), MMP-8 (neutrophil collagenase) and MMP-13 (collagenase-3). Gelatinolytic enzymes included MMP-2 (72-kDa gelatinase A/type IV collagenase) and MMP-9 (92-kDa gelatinase B/type IV collagenase). Inhibitors of MMP activity including tissue inhibitor of metalloproteinases-1 and -2 (TIMP-1 and TIMP-2) were also assessed. All three collagenases and both gelatinases were detected immunochemically. MMP-1 appeared to be responsible for most of the functional collagenolytic activity while gelatinolytic activity reflected both MMP-2 and MMP-9. MMP inhibitor activity was also present, and appeared, based on immunochemical procedures, to reflect the presence of TIMP-1 but not TIMP-2. As a group, tumours identified as having aggressive-growth histologic patterns were not distinguishable from basal cell carcinomas with less aggressive-growth histologic patterns. In normal skin, the same MMPs were detected by immunochemical means. However, only low to undetectable levels of collagenolytic and gelatinolytic activities were present. In contrast, MMP inhibitor activity was comparable to that seen in tumour tissue. In previous studies we have shown that exposure of normal skin to epidermal growth factor in organ culture induces MMP up-regulation and activation. This treatment concomitantly induces stromal invasion by the epithelium (Varani et al (1995) Am J Pathol146: 210–217; Zeigler et al (1996 b) Invasion Metastasis16: 11–18). Taken together with these previous data, the present findings allow us to conclude that the same profile of MMP/MMP inhibitors that is associated with stromal invasion in the organ culture model is expressed endogenously in basal cell carcinomas of skin. © 2000 Cancer Research Campaign
Keywords: interstitial collagenase, collagenase-3, tissue inhibitoral metalloproteinase invasion, fibroblast, epithelial cells, endothelial cells
Full Text
The Full Text of this article is available as a PDF (271.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Airola K., Johansson N., Kariniemi A. L., Kähäri V. M., Saarialho-Kere U. K. Human collagenase-3 is expressed in malignant squamous epithelium of the skin. J Invest Dermatol. 1997 Aug;109(2):225–231. doi: 10.1111/1523-1747.ep12319441. [DOI] [PubMed] [Google Scholar]
- Bauer E. A., Gordon J. M., Reddick M. E., Eisen A. Z. Quantitation and immunocytochemical localization of human skin collagenase in basal cell carcinoma. J Invest Dermatol. 1977 Oct;69(4):363–367. doi: 10.1111/1523-1747.ep12510240. [DOI] [PubMed] [Google Scholar]
- Chi Y., Zeigler M. E., Walker J., Perone P., Datta S. C., Varani J. Elaboration of matrix metalloproteinase inhibitors by human skin in organ culture and by skin cells in monolayer culture: relationship to invasion. Invasion Metastasis. 1998;18(1):27–34. doi: 10.1159/000024496. [DOI] [PubMed] [Google Scholar]
- Chubinskaya S., Huch K., Mikecz K., Cs-Szabo G., Hasty K. A., Kuettner K. E., Cole A. A. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Invest. 1996 Jan;74(1):232–240. [PubMed] [Google Scholar]
- Coussens L. M., Werb Z. Matrix metalloproteinases and the development of cancer. Chem Biol. 1996 Nov;3(11):895–904. doi: 10.1016/s1074-5521(96)90178-7. [DOI] [PubMed] [Google Scholar]
- Erkell L. J., Schirrmacher V. Quantitative in vitro assay for tumor cell invasion through extracellular matrix or into protein gels. Cancer Res. 1988 Dec 1;48(23):6933–6937. [PubMed] [Google Scholar]
- Fisher G. J., Datta S. C., Talwar H. S., Wang Z. Q., Varani J., Kang S., Voorhees J. J. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996 Jan 25;379(6563):335–339. doi: 10.1038/379335a0. [DOI] [PubMed] [Google Scholar]
- Fisher G. J., Wang Z. Q., Datta S. C., Varani J., Kang S., Voorhees J. J. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997 Nov 13;337(20):1419–1428. doi: 10.1056/NEJM199711133372003. [DOI] [PubMed] [Google Scholar]
- Fligiel S. E., Varani J. In situ epithelial cell invasion in organ culture. Invasion Metastasis. 1993;13(5):225–233. [PubMed] [Google Scholar]
- Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbs D. F., Shanley T. P., Warner R. L., Murphy H. S., Varani J., Johnson K. J. Role of matrix metalloproteinases in models of macrophage-dependent acute lung injury. Evidence for alveolar macrophage as source of proteinases. Am J Respir Cell Mol Biol. 1999 Jun;20(6):1145–1154. doi: 10.1165/ajrcmb.20.6.3482. [DOI] [PubMed] [Google Scholar]
- Goslen J. B., Bauer E. A. Basal cell carcinoma and collagenase. J Dermatol Surg Oncol. 1986 Aug;12(8):812–817. doi: 10.1111/j.1524-4725.1986.tb01987.x. [DOI] [PubMed] [Google Scholar]
- Grams F., Crimmin M., Hinnes L., Huxley P., Pieper M., Tschesche H., Bode W. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry. 1995 Oct 31;34(43):14012–14020. doi: 10.1021/bi00043a007. [DOI] [PubMed] [Google Scholar]
- Gray S. T., Wilkins R. J., Yun K. Interstitial collagenase gene expression in oral squamous cell carcinoma. Am J Pathol. 1992 Aug;141(2):301–306. [PMC free article] [PubMed] [Google Scholar]
- Hanemaaijer R., Sorsa T., Konttinen Y. T., Ding Y., Sutinen M., Visser H., van Hinsbergh V. W., Helaakoski T., Kainulainen T., Rönkä H. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline. J Biol Chem. 1997 Dec 12;272(50):31504–31509. doi: 10.1074/jbc.272.50.31504. [DOI] [PubMed] [Google Scholar]
- Hasty K. A., Reife R. A., Kang A. H., Stuart J. M. The role of stromelysin in the cartilage destruction that accompanies inflammatory arthritis. Arthritis Rheum. 1990 Mar;33(3):388–397. doi: 10.1002/art.1780330312. [DOI] [PubMed] [Google Scholar]
- Hu C. L., Crombie G., Franzblau C. A new assay for collagenolytic activity. Anal Biochem. 1978 Aug 1;88(2):638–643. doi: 10.1016/0003-2697(78)90467-0. [DOI] [PubMed] [Google Scholar]
- Huber A. R., Ellis S., Johnson K. J., Dixit V. M., Varani J. Monocyte diapedesis through an in vitro vessel wall construct: inhibition with monoclonal antibodies to thrombospondin. J Leukoc Biol. 1992 Nov;52(5):524–528. doi: 10.1002/jlb.52.5.524. [DOI] [PubMed] [Google Scholar]
- Inoue M., Kratz G., Haegerstrand A., Ståhle-Bäckdahl M. Collagenase expression is rapidly induced in wound-edge keratinocytes after acute injury in human skin, persists during healing, and stops at re-epithelialization. J Invest Dermatol. 1995 Apr;104(4):479–483. doi: 10.1111/1523-1747.ep12605917. [DOI] [PubMed] [Google Scholar]
- Johansson N., Airola K., Grénman R., Kariniemi A. L., Saarialho-Kere U., Kähäri V. M. Expression of collagenase-3 (matrix metalloproteinase-13) in squamous cell carcinomas of the head and neck. Am J Pathol. 1997 Aug;151(2):499–508. [PMC free article] [PubMed] [Google Scholar]
- Karelina T. V., Hruza G. J., Goldberg G. I., Eisen A. Z. Localization of 92-kDa type IV collagenase in human skin tumors: comparison with normal human fetal and adult skin. J Invest Dermatol. 1993 Feb;100(2):159–165. doi: 10.1111/1523-1747.ep12462791. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Onoda N., Takagi T., Hori H., Hattori S., Nagai Y., Tajima S., Nishikawa T. Immunolocalizations of human gelatinase (type IV collagenase, MMP-9) and TIMP (tissue inhibitor of metalloproteinases) in normal epidermis and some epidermal tumors. Arch Dermatol Res. 1996 May;288(5-6):239–244. doi: 10.1007/BF02530091. [DOI] [PubMed] [Google Scholar]
- Kramer R. H., Nicolson G. L. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5704–5708. doi: 10.1073/pnas.76.11.5704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kähäri V. M., Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Dermatol. 1997 Oct;6(5):199–213. doi: 10.1111/j.1600-0625.1997.tb00164.x. [DOI] [PubMed] [Google Scholar]
- Lang P. G., Jr, Maize J. C. Histologic evolution of recurrent basal cell carcinoma and treatment implications. J Am Acad Dermatol. 1986 Feb;14(2 Pt 1):186–196. doi: 10.1016/s0190-9622(86)70020-0. [DOI] [PubMed] [Google Scholar]
- Levy A. T., Cioce V., Sobel M. E., Garbisa S., Grigioni W. F., Liotta L. A., Stetler-Stevenson W. G. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res. 1991 Jan 1;51(1):439–444. [PubMed] [Google Scholar]
- Majmudar G., Nelson B. R., Jensen T. C., Voorhees J. J., Johnson T. M. Increased expression of stromelysin-3 in basal cell carcinomas. Mol Carcinog. 1994 Jan;9(1):17–23. doi: 10.1002/mc.2940090105. [DOI] [PubMed] [Google Scholar]
- Mareel M., Kint J., Meyvisch C. Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heart in vitro. Virchows Arch B Cell Pathol Incl Mol Pathol. 1979 May 4;30(1):95–111. doi: 10.1007/BF02889094. [DOI] [PubMed] [Google Scholar]
- Muller D., Breathnach R., Engelmann A., Millon R., Bronner G., Flesch H., Dumont P., Eber M., Abecassis J. Expression of collagenase-related metalloproteinase genes in human lung or head and neck tumours. Int J Cancer. 1991 Jun 19;48(4):550–556. doi: 10.1002/ijc.2910480412. [DOI] [PubMed] [Google Scholar]
- Mulligan M. S., Desrochers P. E., Chinnaiyan A. M., Gibbs D. F., Varani J., Johnson K. J., Weiss S. J. In vivo suppression of immune complex-induced alveolitis by secretory leukoproteinase inhibitor and tissue inhibitor of metalloproteinases 2. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11523–11527. doi: 10.1073/pnas.90.24.11523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polette M., Clavel C., Muller D., Abecassis J., Binninger I., Birembaut P. Detection of mRNAs encoding collagenase I and stromelysin 2 in carcinomas of the head and neck by in situ hybridization. Invasion Metastasis. 1991;11(2):76–83. [PubMed] [Google Scholar]
- Pyke C., Ralfkiaer E., Huhtala P., Hurskainen T., Danø K., Tryggvason K. Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res. 1992 Mar 1;52(5):1336–1341. [PubMed] [Google Scholar]
- Reich R., Thompson E. W., Iwamoto Y., Martin G. R., Deason J. R., Fuller G. C., Miskin R. Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res. 1988 Jun 15;48(12):3307–3312. [PubMed] [Google Scholar]
- Rosenthal E. L., Johnson T. M., Allen E. D., Apel I. J., Punturieri A., Weiss S. J. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor- and scatter factor-stimulated invasion of carcinoma cells. Cancer Res. 1998 Nov 15;58(22):5221–5230. [PubMed] [Google Scholar]
- Saarialho-Kere U. K., Kovacs S. O., Pentland A. P., Olerud J. E., Welgus H. G., Parks W. C. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J Clin Invest. 1993 Dec;92(6):2858–2866. doi: 10.1172/JCI116906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salasche S. J., Amonette R. A. Morpheaform basal-cell epitheliomas. A study of subclinical extensions in a series of 51 cases. J Dermatol Surg Oncol. 1981 May;7(5):387–394. doi: 10.1111/j.1524-4725.1981.tb00662.x. [DOI] [PubMed] [Google Scholar]
- Shapiro S. D., Fliszar C. J., Broekelmann T. J., Mecham R. P., Senior R. M., Welgus H. G. Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP). J Biol Chem. 1995 Mar 17;270(11):6351–6356. doi: 10.1074/jbc.270.11.6351. [DOI] [PubMed] [Google Scholar]
- Shima I., Sasaguri Y., Kusukawa J., Yamana H., Fujita H., Kakegawa T., Morimatsu M. Production of matrix metalloproteinase-2 and metalloproteinase-3 related to malignant behavior of esophageal carcinoma. A clinicopathologic study. Cancer. 1992 Dec 15;70(12):2747–2753. doi: 10.1002/1097-0142(19921215)70:12<2747::aid-cncr2820701204>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
- Sottrup-Jensen L., Birkedal-Hansen H. Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J Biol Chem. 1989 Jan 5;264(1):393–401. [PubMed] [Google Scholar]
- Springman E. B., Angleton E. L., Birkedal-Hansen H., Van Wart H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):364–368. doi: 10.1073/pnas.87.1.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., Bissell M. J., Werb Z. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol. 1994 May;125(3):681–693. doi: 10.1083/jcb.125.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uría J. A., Ståhle-Bäckdahl M., Seiki M., Fueyo A., López-Otín C. Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal-epithelial cell interactions. Cancer Res. 1997 Nov 1;57(21):4882–4888. [PubMed] [Google Scholar]
- Varani J., Fligiel S. E., Schuger L., Perone P., Inman D., Griffiths C. E., Voorhees J. J. Effects of all-trans retinoic acid and Ca++ on human skin in organ culture. Am J Pathol. 1993 Jan;142(1):189–198. [PMC free article] [PubMed] [Google Scholar]
- Varani J., Fligiel S. E., Till G. O., Kunkel R. G., Ryan U. S., Ward P. A. Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical. Lab Invest. 1985 Dec;53(6):656–663. [PubMed] [Google Scholar]
- Varani J., Kang S., Stoll S., Elder J. T. Human psoriatic skin in organ culture: comparison with normal skin exposed to exogenous growth factors and effects of an antibody to the EGF receptor. Pathobiology. 1998;66(6):253–259. doi: 10.1159/000028031. [DOI] [PubMed] [Google Scholar]
- Varani J., Larson B. K., Perone P., Inman D. R., Fligiel S. E., Voorhees J. J. All-trans retinoic acid and extracellular Ca2+ differentially influence extracellular matrix production by human skin in organ culture. Am J Pathol. 1993 Jun;142(6):1813–1822. [PMC free article] [PubMed] [Google Scholar]
- Varani J., Perone P., Griffiths C. E., Inman D. R., Fligiel S. E., Voorhees J. J. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently. J Clin Invest. 1994 Nov;94(5):1747–1756. doi: 10.1172/JCI117522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varani J., Perone P., Inman D. R., Burmeister W., Schollenberger S. B., Fligiel S. E., Sitrin R. G., Johnson K. J. Human skin in organ culture. Elaboration of proteolytic enzymes in the presence and absence of exogenous growth factors. Am J Pathol. 1995 Jan;146(1):210–217. [PMC free article] [PubMed] [Google Scholar]
- Varani J., Schuger L., Fligiel S. E., Inman D. R., Chakrabarty S. Production of fibronectin by human tumor cells and interaction with exogenous fibronectin: comparison of cell lines obtained from colon adenocarcinomas and squamous carcinomas of the upper aerodigestive tract. Int J Cancer. 1991 Feb 1;47(3):421–425. doi: 10.1002/ijc.2910470319. [DOI] [PubMed] [Google Scholar]
- Varani J., Zeigler M. E., Perone P., Carey T. E., Datta S. C. Human squamous carcinoma cell invasion in organ-cultured skin. Cancer Lett. 1997 Jan 1;111(1-2):51–57. doi: 10.1016/s0304-3835(96)04492-8. [DOI] [PubMed] [Google Scholar]
- Zeigler M. E., Chi Y., Schmidt T., Varani J. Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes. J Cell Physiol. 1999 Aug;180(2):271–284. doi: 10.1002/(SICI)1097-4652(199908)180:2<271::AID-JCP15>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Zeigler M. E., Dutcheshen N. T., Gibbs D. F., Varani J. Growth factor-induced epidermal invasion of the dermis in human skin organ culture: expression and role of matrix metalloproteinases. Invasion Metastasis. 1996;16(1):11–18. [PubMed] [Google Scholar]
- Zeigler M. E., Krause S., Karmiol S., Varani J. Growth factor-induced epidermal invasion of the dermis in human skin organ culture: dermal invasion correlated with epithelial cell motility. Invasion Metastasis. 1996;16(1):3–10. [PubMed] [Google Scholar]