Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jan 18;82(3):608–615. doi: 10.1054/bjoc.1999.0971

Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography:a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas

C S Brock 1, H Young 1, S M O'Reilly 1,1, J Matthews 1, S Osman 1, H Evans 2, E S Newlands 2, P M Price 1
PMCID: PMC2363328  PMID: 10682673

Abstract

Quantitation of metabolic changes in tumours may provide an objective measure of clinical and subclinical response to anticancer therapy. This pilot study assesses the value of quantitation of metabolic rate of glucose (MRGlu) measured in mmol min−1ml−1to assess early subclinical response to therapy in a relatively non-responsive tumour. Nine patients receiving the CRC Phase II study schedule of temozolomide were assessed with [18F]fluorodeoxyglucose ([18F]FDG) dynamic positron emission tomography (PET) scans prior to and 14 days after treatment with temozolomide given as 750–1000 mg m−2over 5 days every 28 days. Tumour MRGlu was calculated and compared with objective response at 8 weeks. Pretreatment MRGlu was higher in responders than non-responders. The responding patient group had a greater than 25% reduction in MRGlu in regions of high focal tumour uptake (HFU). Whole tumour changes in MRGlu did not correlate with response. Percentage change in HFU standardized uptake value (SUV) did discriminate the responding from the non-responding patients, but not as well as with MRGlu. Large differences also occurred in the normal brain SUV following treatment. Thus, MRGlu appeared to be a more sensitive discriminator of response than the simplified static SUV analysis. Changes in MRGlu may reflect the degree of cell kill following chemotherapy and so may provide an objective, quantitative subclinical measure of response to therapy. © 2000 Cancer Research Campaign

Keywords: temozolomide, positron emission tomography, glioma, metabolic rate of glucose (MRGlu)

Full Text

The Full Text of this article is available as a PDF (105.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alavi J. B., Alavi A., Chawluk J., Kushner M., Powe J., Hickey W., Reivich M. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer. 1988 Sep 15;62(6):1074–1078. doi: 10.1002/1097-0142(19880915)62:6<1074::aid-cncr2820620609>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. J., Timperley W. R., Taylor C. B., Hill A. S. Isoenzymes of hexokinase in the developing, normal and neoplastic human brain. Eur J Cancer. 1978 Feb;14(2):189–193. doi: 10.1016/0014-2964(78)90177-9. [DOI] [PubMed] [Google Scholar]
  3. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  4. Bleehen N. M., Freedman L. S., Stenning S. P. A randomized study of CCNU with and without benznidazole in the treatment of recurrent grades 3 and 4 astrocytoma. Report to the Medical Research Council by the Brain Tumor Working Party. Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):1077–1081. doi: 10.1016/0360-3016(89)90920-6. [DOI] [PubMed] [Google Scholar]
  5. Brown R. S., Leung J. Y., Fisher S. J., Frey K. A., Ethier S. P., Wahl R. L. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med. 1996 Jun;37(6):1042–1047. [PubMed] [Google Scholar]
  6. Brown R. S., Wahl R. L. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer. 1993 Nov 15;72(10):2979–2985. doi: 10.1002/1097-0142(19931115)72:10<2979::aid-cncr2820721020>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  7. Cairncross J. G., Macdonald D. R., Pexman J. H., Ives F. J. Steroid-induced CT changes in patients with recurrent malignant glioma. Neurology. 1988 May;38(5):724–726. doi: 10.1212/wnl.38.5.724. [DOI] [PubMed] [Google Scholar]
  8. Cairncross J. G., Pexman J. H., Rathbone M. P., DelMaestro R. F. Postoperative contrast enhancement in patients with brain tumor. Ann Neurol. 1985 Jun;17(6):570–572. doi: 10.1002/ana.410170607. [DOI] [PubMed] [Google Scholar]
  9. De Witte O., Hildebrand J., Luxen A., Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer. 1994 Nov 15;74(10):2836–2842. doi: 10.1002/1097-0142(19941115)74:10<2836::aid-cncr2820741015>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  10. Di Chiro G., DeLaPaz R. L., Brooks R. A., Sokoloff L., Kornblith P. L., Smith B. H., Patronas N. J., Kufta C. V., Kessler R. M., Johnston G. S. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982 Dec;32(12):1323–1329. doi: 10.1212/wnl.32.12.1323. [DOI] [PubMed] [Google Scholar]
  11. Fischman A. J., Alpert N. M. FDG-PET in oncology: there's more to it than looking at pictures. J Nucl Med. 1993 Jan;34(1):6–11. [PubMed] [Google Scholar]
  12. Fulham M. J., Brunetti A., Aloj L., Raman R., Dwyer A. J., Di Chiro G. Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J Neurosurg. 1995 Oct;83(4):657–664. doi: 10.3171/jns.1995.83.4.0657. [DOI] [PubMed] [Google Scholar]
  13. Hamacher K., Coenen H. H., Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986 Feb;27(2):235–238. [PubMed] [Google Scholar]
  14. Hamberg L. M., Hunter G. J., Alpert N. M., Choi N. C., Babich J. W., Fischman A. J. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994 Aug;35(8):1308–1312. [PubMed] [Google Scholar]
  15. Herholz K., Pietrzyk U., Voges J., Schröder R., Halber M., Treuer H., Sturm V., Heiss W. D. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg. 1993 Dec;79(6):853–858. doi: 10.3171/jns.1993.79.6.0853. [DOI] [PubMed] [Google Scholar]
  16. Herholz K., Rudolf J., Heiss W. D. FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neurooncol. 1992 Feb;12(2):159–165. doi: 10.1007/BF00172667. [DOI] [PubMed] [Google Scholar]
  17. Herholz K., Wienhard K., Heiss W. D. Validity of PET studies in brain tumors. Cerebrovasc Brain Metab Rev. 1990 Fall;2(3):240–265. [PubMed] [Google Scholar]
  18. Higashi K., Clavo A. C., Wahl R. L. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med. 1993 Mar;34(3):414–419. [PubMed] [Google Scholar]
  19. Holthoff V. A., Herholz K., Berthold F., Widemann B., Schröder R., Neubauer I., Heiss W. D. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer. 1993 Aug 15;72(4):1394–1403. doi: 10.1002/1097-0142(19930815)72:4<1394::aid-cncr2820720440>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  20. Huang S. C., Phelps M. E., Hoffman E. J., Sideris K., Selin C. J., Kuhl D. E. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980 Jan;238(1):E69–E82. doi: 10.1152/ajpendo.1980.238.1.E69. [DOI] [PubMed] [Google Scholar]
  21. Ichiya Y., Kuwabara Y., Otsuka M., Tahara T., Yoshikai T., Fukumura T., Jingu K., Masuda K. Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucose and positron emission tomography. J Nucl Med. 1991 Sep;32(9):1655–1660. [PubMed] [Google Scholar]
  22. Ishizu K., Nishizawa S., Yonekura Y., Sadato N., Magata Y., Tamaki N., Tsuchida T., Okazawa H., Miyatake S., Ishikawa M. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med. 1994 Jul;35(7):1104–1109. [PubMed] [Google Scholar]
  23. Jansson T., Westlin J. E., Ahlström H., Lilja A., Långström B., Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol. 1995 Jun;13(6):1470–1477. doi: 10.1200/JCO.1995.13.6.1470. [DOI] [PubMed] [Google Scholar]
  24. Lammertsma A. A., Brooks D. J., Frackowiak R. S., Beaney R. P., Herold S., Heather J. D., Palmer A. J., Jones T. Measurement of glucose utilisation with [18F]2-fluoro-2-deoxy-D-glucose: a comparison of different analytical methods. J Cereb Blood Flow Metab. 1987 Apr;7(2):161–172. doi: 10.1038/jcbfm.1987.39. [DOI] [PubMed] [Google Scholar]
  25. Lindholm P., Minn H., Leskinen-Kallio S., Bergman J., Ruotsalainen U., Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer--a PET study. J Nucl Med. 1993 Jan;34(1):1–6. [PubMed] [Google Scholar]
  26. Minn H., Joensuu H., Ahonen A., Klemi P. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors. Cancer. 1988 May 1;61(9):1776–1781. doi: 10.1002/1097-0142(19880501)61:9<1776::aid-cncr2820610909>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  27. Minn H., Paul R., Ahonen A. Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18 fluorodeoxyglucose. J Nucl Med. 1988 Sep;29(9):1521–1525. [PubMed] [Google Scholar]
  28. Newlands E. S., Blackledge G. R., Slack J. A., Rustin G. J., Smith D. B., Stuart N. S., Quarterman C. P., Hoffman R., Stevens M. F., Brampton M. H. Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer. 1992 Feb;65(2):287–291. doi: 10.1038/bjc.1992.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Reilly S. M., Newlands E. S., Glaser M. G., Brampton M., Rice-Edwards J. M., Illingworth R. D., Richards P. G., Kennard C., Colquhoun I. R., Lewis P. Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer. 1993;29A(7):940–942. doi: 10.1016/s0959-8049(05)80198-4. [DOI] [PubMed] [Google Scholar]
  30. Okada J., Yoshikawa K., Itami M., Imaseki K., Uno K., Itami J., Kuyama J., Mikata A., Arimizu N. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med. 1992 Mar;33(3):325–329. [PubMed] [Google Scholar]
  31. Patronas N. J., Di Chiro G., Brooks R. A., DeLaPaz R. L., Kornblith P. L., Smith B. H., Rizzoli H. V., Kessler R. M., Manning R. G., Channing M. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology. 1982 Sep;144(4):885–889. doi: 10.1148/radiology.144.4.6981123. [DOI] [PubMed] [Google Scholar]
  32. Phelps M. E., Huang S. C., Hoffman E. J., Selin C., Sokoloff L., Kuhl D. E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979 Nov;6(5):371–388. doi: 10.1002/ana.410060502. [DOI] [PubMed] [Google Scholar]
  33. Price P., Jones T. Can positron emission tomography (PET) be used to detect subclinical response to cancer therapy? The EC PET Oncology Concerted Action and the EORTC PET Study Group. Eur J Cancer. 1995 Nov;31A(12):1924–1927. doi: 10.1016/0959-8049(95)00421-1. [DOI] [PubMed] [Google Scholar]
  34. Ranicar A. S., Williams C. W., Schnorr L., Clark J. C., Rhodes C. G., Bloomfield P. M., Jones T. The on-line monitoring of continuously withdrawn arterial blood during PET studies using a single BGO/photomultiplier assembly and non-stick tubing. Med Prog Technol. 1991;17(3-4):259–264. [PubMed] [Google Scholar]
  35. Reivich M., Alavi A., Wolf A., Fowler J., Russell J., Arnett C., MacGregor R. R., Shiue C. Y., Atkins H., Anand A. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985 Jun;5(2):179–192. doi: 10.1038/jcbfm.1985.24. [DOI] [PubMed] [Google Scholar]
  36. Roelcke U., Blasberg R. G., von Ammon K., Hofer S., Vontobel P., Maguire R. P., Radü E. W., Herrmann R., Leenders K. L. Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med. 1998 May;39(5):879–884. [PubMed] [Google Scholar]
  37. Rozental J. M., Levine R. L., Nickles R. J., Dobkin J. A. Glucose uptake by gliomas after treatment. A positron emission tomographic study. Arch Neurol. 1989 Dec;46(12):1302–1307. doi: 10.1001/archneur.1989.00520480044018. [DOI] [PubMed] [Google Scholar]
  38. Schmidt K., Lucignani G., Moresco R. M., Rizzo G., Gilardi M. C., Messa C., Colombo F., Fazio F., Sokoloff L. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1992 Sep;12(5):823–834. doi: 10.1038/jcbfm.1992.114. [DOI] [PubMed] [Google Scholar]
  39. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  40. Spence A. M., Muzi M., Graham M. M., O'Sullivan F., Krohn K. A., Link J. M., Lewellen T. K., Lewellen B., Freeman S. D., Berger M. S. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med. 1998 Mar;39(3):440–448. [PubMed] [Google Scholar]
  41. Valk P. E., Budinger T. F., Levin V. A., Silver P., Gutin P. H., Doyle W. K. PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg. 1988 Dec;69(6):830–838. doi: 10.3171/jns.1988.69.6.0830. [DOI] [PubMed] [Google Scholar]
  42. Wahl R. L., Zasadny K., Helvie M., Hutchins G. D., Weber B., Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993 Nov;11(11):2101–2111. doi: 10.1200/JCO.1993.11.11.2101. [DOI] [PubMed] [Google Scholar]
  43. Woods R. P., Cherry S. R., Mazziotta J. C. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr. 1992 Jul-Aug;16(4):620–633. doi: 10.1097/00004728-199207000-00024. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES