Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jan 18;82(3):666–674. doi: 10.1054/bjoc.1999.0979

ERBB-2 overexpression confers PI 3 kinase-dependent invasion capacity on human mammary epithelial cells

K M Woods Ignatoski 1, T Maehama 2, S M Markwart 3, J E Dixon 2, D L Livant 3, S P Ethier 1
PMCID: PMC2363331  PMID: 10682681

Abstract

Amplification and overexpression of ERBB-2 in human breast cancer is thought to play a significant role in the progression of the disease; however, its precise role in the aetiology of altered phenotypes associated with human breast cancer is unknown. We have previously shown that exogenous overexpression of ERBB-2 conferred growth factor independence on human mammary epithelial cells. In this study, we show that ERBB-2 overexpression also causes the cells to acquire other characteristics exhibited by human breast cancer cells, such as anchorage-independent growth and invasion capabilities. ERBB-2-induced invasion is dependent on fibronectin and correlates with the down-regulation of cell surface α4 integrin. In addition ERBB-2 co-immunoprecipitates with focal adhesion kinase (FAK) in these cells. We have also shown, by use of exogenously expressed PTEN and by treatment with the PI3′-kinase inhibitor LY294002, that ERBB-2-induced invasion is dependent on the PI3′-kinase pathway; however, PTEN does not dephosphorylate FAK in these cells. © 2000 Cancer Research Campaign

Keywords: ERBB-2, invasion, P13′ kinase, human breast cancer, human mammary epithelial cells

Full Text

The Full Text of this article is available as a PDF (179.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Yamada K. M. The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem. 1985 Apr 10;260(7):4492–4500. [PubMed] [Google Scholar]
  2. Alroy I., Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997 Jun 23;410(1):83–86. doi: 10.1016/s0014-5793(97)00412-2. [DOI] [PubMed] [Google Scholar]
  3. Anzick S. L., Kononen J., Walker R. L., Azorsa D. O., Tanner M. M., Guan X. Y., Sauter G., Kallioniemi O. P., Trent J. M., Meltzer P. S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997 Aug 15;277(5328):965–968. doi: 10.1126/science.277.5328.965. [DOI] [PubMed] [Google Scholar]
  4. Aota S., Nomizu M., Yamada K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem. 1994 Oct 7;269(40):24756–24761. [PubMed] [Google Scholar]
  5. Bachelot C., Rameh L., Parsons T., Cantley L. C. Association of phosphatidylinositol 3-kinase, via the SH2 domains of p85, with focal adhesion kinase in polyoma middle t-transformed fibroblasts. Biochim Biophys Acta. 1996 Mar 27;1311(1):45–52. doi: 10.1016/0167-4889(95)00176-x. [DOI] [PubMed] [Google Scholar]
  6. Band V., Sager R. Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1249–1253. doi: 10.1073/pnas.86.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Band V., Zajchowski D., Swisshelm K., Trask D., Kulesa V., Cohen C., Connolly J., Sager R. Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 1990 Nov 15;50(22):7351–7357. [PubMed] [Google Scholar]
  8. Ben-Levy R., Paterson H. F., Marshall C. J., Yarden Y. A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the MAP kinase pathway. EMBO J. 1994 Jul 15;13(14):3302–3311. doi: 10.1002/j.1460-2075.1994.tb06632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berger M. S., Locher G. W., Saurer S., Gullick W. J., Waterfield M. D., Groner B., Hynes N. E. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res. 1988 Mar 1;48(5):1238–1243. [PubMed] [Google Scholar]
  10. Bièche I., Tomasetto C., Régnier C. H., Moog-Lutz C., Rio M. C., Lidereau R. Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer Res. 1996 Sep 1;56(17):3886–3890. [PubMed] [Google Scholar]
  11. Bonilla M., Ramirez M., Lopez-Cueto J., Gariglio P. In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst. 1988 Jul 6;80(9):665–671. doi: 10.1093/jnci/80.9.665. [DOI] [PubMed] [Google Scholar]
  12. Borg A., Baldetorp B., Fernö M., Olsson H., Sigurdsson H. c-myc amplification is an independent prognostic factor in postmenopausal breast cancer. Int J Cancer. 1992 Jul 9;51(5):687–691. doi: 10.1002/ijc.2910510504. [DOI] [PubMed] [Google Scholar]
  13. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  14. Clark R. A., Wikner N. E., Doherty D. E., Norris D. A. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J Biol Chem. 1988 Aug 25;263(24):12115–12123. [PubMed] [Google Scholar]
  15. Di Fiore P. P., Pierce J. H., Kraus M. H., Segatto O., King C. R., Aaronson S. A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178–182. doi: 10.1126/science.2885917. [DOI] [PubMed] [Google Scholar]
  16. Di Fiore P. P., Segatto O., Lonardo F., Fazioli F., Pierce J. H., Aaronson S. A. The carboxy-terminal domains of erbB-2 and epidermal growth factor receptor exert different regulatory effects on intrinsic receptor tyrosine kinase function and transforming activity. Mol Cell Biol. 1990 Jun;10(6):2749–2756. doi: 10.1128/mcb.10.6.2749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Di Fiore P. P., Segatto O., Taylor W. G., Aaronson S. A., Pierce J. H. EGF receptor and erbB-2 tyrosine kinase domains confer cell specificity for mitogenic signaling. Science. 1990 Apr 6;248(4951):79–83. doi: 10.1126/science.2181668. [DOI] [PubMed] [Google Scholar]
  18. Earp H. S., Austin K. S., Blaisdell J., Rubin R. A., Nelson K. G., Lee L. W., Grisham J. W. Epidermal growth factor (EGF) stimulates EGF receptor synthesis. J Biol Chem. 1986 Apr 15;261(11):4777–4780. [PubMed] [Google Scholar]
  19. Fedi P., Pierce J. H., di Fiore P. P., Kraus M. H. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol. 1994 Jan;14(1):492–500. doi: 10.1128/mcb.14.1.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gillett C., Fantl V., Smith R., Fisher C., Bartek J., Dickson C., Barnes D., Peters G. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 1994 Apr 1;54(7):1812–1817. [PubMed] [Google Scholar]
  21. Grinnell F., Ho C. H., Wysocki A. Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol. 1992 Apr;98(4):410–416. doi: 10.1111/1523-1747.ep12499839. [DOI] [PubMed] [Google Scholar]
  22. Guan J. L. Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol. 1997 Aug-Sep;29(8-9):1085–1096. doi: 10.1016/s1357-2725(97)00051-4. [DOI] [PubMed] [Google Scholar]
  23. Guérin M., Gabillot M., Mathieu M. C., Travagli J. P., Spielmann M., Andrieu N., Riou G. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer. 1989 Feb 15;43(2):201–208. doi: 10.1002/ijc.2910430205. [DOI] [PubMed] [Google Scholar]
  24. Harris K. F., Christensen J. B., Radany E. H., Imperiale M. J. Novel mechanisms of E2F induction by BK virus large-T antigen: requirement of both the pRb-binding and the J domains. Mol Cell Biol. 1998 Mar;18(3):1746–1756. doi: 10.1128/mcb.18.3.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hudziak R. M., Schlessinger J., Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7159–7163. doi: 10.1073/pnas.84.20.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huhtala P., Humphries M. J., McCarthy J. B., Tremble P. M., Werb Z., Damsky C. H. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol. 1995 May;129(3):867–879. doi: 10.1083/jcb.129.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ignatoski K. M., Lapointe A. J., Radany E. H., Ethier S. P. erbB-2 overexpression in human mammary epithelial cells confers growth factor independence. Endocrinology. 1999 Aug;140(8):3615–3622. doi: 10.1210/endo.140.8.6939. [DOI] [PubMed] [Google Scholar]
  28. Ilić D., Damsky C. H., Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci. 1997 Feb;110(Pt 4):401–407. doi: 10.1242/jcs.110.4.401. [DOI] [PubMed] [Google Scholar]
  29. Jaakkola S., Salmikangas P., Nylund S., Partanen J., Armstrong E., Pyrhönen S., Lehtovirta P., Nevanlinna H. Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer. 1993 May 28;54(3):378–382. doi: 10.1002/ijc.2910540305. [DOI] [PubMed] [Google Scholar]
  30. Jacquemier J., Adelaide J., Parc P., Penault-Llorca F., Planche J., deLapeyriere O., Birnbaum D. Expression of the FGFR1 gene in human breast-carcinoma cells. Int J Cancer. 1994 Nov 1;59(3):373–378. doi: 10.1002/ijc.2910590314. [DOI] [PubMed] [Google Scholar]
  31. Kraus M. H., Popescu N. C., Amsbaugh S. C., King C. R. Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J. 1987 Mar;6(3):605–610. doi: 10.1002/j.1460-2075.1987.tb04797.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Livant D. L., Linn S., Markwart S., Shuster J. Invasion of selectively permeable sea urchin embryo basement membranes by metastatic tumor cells, but not by their normal counterparts. Cancer Res. 1995 Nov 1;55(21):5085–5093. [PubMed] [Google Scholar]
  33. Lonardo F., Di Marco E., King C. R., Pierce J. H., Segatto O., Aaronson S. A., Di Fiore P. P. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 1990 Nov;2(11):992–1003. [PubMed] [Google Scholar]
  34. Luqmani Y. A., Graham M., Coombes R. C. Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer. 1992 Aug;66(2):273–280. doi: 10.1038/bjc.1992.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Maehama T., Dixon J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 29;273(22):13375–13378. doi: 10.1074/jbc.273.22.13375. [DOI] [PubMed] [Google Scholar]
  36. Marte B. M., Graus-Porta D., Jeschke M., Fabbro D., Hynes N. E., Taverna D. NDF/heregulin activates MAP kinase and p70/p85 S6 kinase during proliferation or differentiation of mammary epithelial cells. Oncogene. 1995 Jan 5;10(1):167–175. [PubMed] [Google Scholar]
  37. Natali P. G., Nicotra M. R., Bigotti A., Venturo I., Slamon D. J., Fendly B. M., Ullrich A. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. 1990 Mar 15;45(3):457–461. doi: 10.1002/ijc.2910450314. [DOI] [PubMed] [Google Scholar]
  38. Pierce J. H., Arnstein P., DiMarco E., Artrip J., Kraus M. H., Lonardo F., Di Fiore P. P., Aaronson S. A. Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene. 1991 Jul;6(7):1189–1194. [PubMed] [Google Scholar]
  39. Postlethwaite A. E., Keski-Oja J., Balian G., Kang A. H. Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment. J Exp Med. 1981 Feb 1;153(2):494–499. doi: 10.1084/jem.153.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ram T. G., Dilts C. A., Dziubinski M. L., Pierce L. J., Ethier S. P. Insulin-like growth factor and epidermal growth factor independence in human mammary carcinoma cells with c-erbB-2 gene amplification and progressively elevated levels of tyrosine-phosphorylated p185erbB-2. Mol Carcinog. 1996 Mar;15(3):227–238. doi: 10.1002/(SICI)1098-2744(199603)15:3<227::AID-MC8>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  41. Ram T. G., Ethier S. P. Phosphatidylinositol 3-kinase recruitment by p185erbB-2 and erbB-3 is potently induced by neu differentiation factor/heregulin during mitogenesis and is constitutively elevated in growth factor-independent breast carcinoma cells with c-erbB-2 gene amplification. Cell Growth Differ. 1996 May;7(5):551–561. [PubMed] [Google Scholar]
  42. Rokhlin O. W., Cohen M. B. Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate. 1995 Apr;26(4):205–212. doi: 10.1002/pros.2990260406. [DOI] [PubMed] [Google Scholar]
  43. Ruoslahti E., Hayman E. G., Pierschbacher M., Engvall E. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 1982;82(Pt A):803–831. doi: 10.1016/0076-6879(82)82103-4. [DOI] [PubMed] [Google Scholar]
  44. Seftor R. E., Seftor E. A., Sheng S., Pemberton P. A., Sager R., Hendrix M. J. maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Res. 1998 Dec 15;58(24):5681–5685. [PubMed] [Google Scholar]
  45. Sen S., Zhou H., White R. A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene. 1997 May 8;14(18):2195–2200. doi: 10.1038/sj.onc.1201065. [DOI] [PubMed] [Google Scholar]
  46. Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., McGuire W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177–182. doi: 10.1126/science.3798106. [DOI] [PubMed] [Google Scholar]
  47. Soltoff S. P., Carraway K. L., 3rd, Prigent S. A., Gullick W. G., Cantley L. C. ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol. 1994 Jun;14(6):3550–3558. doi: 10.1128/mcb.14.6.3550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tamura M., Gu J., Takino T., Yamada K. M. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 1999 Jan 15;59(2):442–449. [PubMed] [Google Scholar]
  49. Watson P. H., Safneck J. R., Le K., Dubik D., Shiu R. P. Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J Natl Cancer Inst. 1993 Jun 2;85(11):902–907. doi: 10.1093/jnci/85.11.902. [DOI] [PubMed] [Google Scholar]
  50. Weaver V. M., Petersen O. W., Wang F., Larabell C. A., Briand P., Damsky C., Bissell M. J. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997 Apr 7;137(1):231–245. doi: 10.1083/jcb.137.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Witkowski C. M., Rabinovitz I., Nagle R. B., Affinito K. S., Cress A. E. Characterization of integrin subunits, cellular adhesion and tumorgenicity of four human prostate cell lines. J Cancer Res Clin Oncol. 1993;119(11):637–644. doi: 10.1007/BF01215981. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES