Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jan 18;82(3):601–607. doi: 10.1054/bjoc.1999.0970

Telomere length and telomerase activity in malignant lymphomas at diagnosis and relapse

K Remes 1, K-F Norrback 1, R Rosenquist 1, C Mehle 1, J Lindh 2, G Roos 1
PMCID: PMC2363336  PMID: 10682672

Abstract

Telomere length maintenance, in the vast majority of cases executed by telomerase, is a prerequisite for long-term proliferation. Most malignant tumours, including lymphomas, are telomerase-positive and this activity is a potential target for future therapeutic interventions since inhibition of telomerase has been shown to result in telomere shortening and cell death in vitro. One prerequisite for the suitability of anti-telomerase drugs in treating cancer is that tumours exhibit shortened telomeres compared to telomerase-positive stem cells. A scenario is envisioned where the tumour burden is reduced using conventional therapy whereafter remaining tumour cells are treated with telomerase inhibitors. In evaluating the realism of such an approach it is essential to know the effects on telomere status by traditional therapeutic regimens. We have studied the telomere lengths in 47 diagnostic lymphomas and a significant telomere shortening was observed compared to benign lymphoid tissues. In addition, telomere length and telomerase activity were studied in consecutive samples from patients with relapsing non-Hodgkin's lymphomas. Shortened, unchanged and elongated telomere lengths were observed in the relapse samples. The telomere length alterations found in the relapsing lymphomas appeared to be independent of telomerase and rather represented clonal selection random at the telomere length level. These data indicate that anti-telomerase therapy would be suitable in only a fraction of malignant lymphomas. © 2000 Cancer Research Campaign

Keywords: telomere length, telomerase activity, malignant lymphoma, relapse, tumour progression, clonality

Full Text

The Full Text of this article is available as a PDF (106.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allsopp R. C., Chang E., Kashefi-Aazam M., Rogaev E. I., Piatyszek M. A., Shay J. W., Harley C. B. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res. 1995 Sep;220(1):194–200. doi: 10.1006/excr.1995.1306. [DOI] [PubMed] [Google Scholar]
  2. Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., Harley C. B., Shay J. W., Lichtsteiner S., Wright W. E. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998 Jan 16;279(5349):349–352. doi: 10.1126/science.279.5349.349. [DOI] [PubMed] [Google Scholar]
  3. Bryan T. M., Englezou A., Dalla-Pozza L., Dunham M. A., Reddel R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997 Nov;3(11):1271–1274. doi: 10.1038/nm1197-1271. [DOI] [PubMed] [Google Scholar]
  4. Bryan T. M., Reddel R. R. Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer. 1997 Apr;33(5):767–773. doi: 10.1016/S0959-8049(97)00065-8. [DOI] [PubMed] [Google Scholar]
  5. Feng J., Funk W. D., Wang S. S., Weinrich S. L., Avilion A. A., Chiu C. P., Adams R. R., Chang E., Allsopp R. C., Yu J. The RNA component of human telomerase. Science. 1995 Sep 1;269(5228):1236–1241. doi: 10.1126/science.7544491. [DOI] [PubMed] [Google Scholar]
  6. Gravel S., Larrivée M., Labrecque P., Wellinger R. J. Yeast Ku as a regulator of chromosomal DNA end structure. Science. 1998 May 1;280(5364):741–744. doi: 10.1126/science.280.5364.741. [DOI] [PubMed] [Google Scholar]
  7. Harris N. L., Jaffe E. S., Stein H., Banks P. M., Chan J. K., Cleary M. L., Delsol G., De Wolf-Peeters C., Falini B., Gatter K. C. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994 Sep 1;84(5):1361–1392. [PubMed] [Google Scholar]
  8. Hiyama K., Hirai Y., Kyoizumi S., Akiyama M., Hiyama E., Piatyszek M. A., Shay J. W., Ishioka S., Yamakido M. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol. 1995 Oct 15;155(8):3711–3715. [PubMed] [Google Scholar]
  9. Härle-Bachor C., Boukamp P. Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6476–6481. doi: 10.1073/pnas.93.13.6476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
  11. LaBranche H., Dupuis S., Ben-David Y., Bani M. R., Wellinger R. J., Chabot B. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat Genet. 1998 Jun;19(2):199–202. doi: 10.1038/575. [DOI] [PubMed] [Google Scholar]
  12. Levy M. Z., Allsopp R. C., Futcher A. B., Greider C. W., Harley C. B. Telomere end-replication problem and cell aging. J Mol Biol. 1992 Jun 20;225(4):951–960. doi: 10.1016/0022-2836(92)90096-3. [DOI] [PubMed] [Google Scholar]
  13. Mehle C., Piatyszek M. A., Ljungberg B., Shay J. W., Roos G. Telomerase activity in human renal cell carcinoma. Oncogene. 1996 Jul 4;13(1):161–166. [PubMed] [Google Scholar]
  14. Mergny J. L., Hélène C. G-quadruplex DNA: a target for drug design. Nat Med. 1998 Dec;4(12):1366–1367. doi: 10.1038/3949. [DOI] [PubMed] [Google Scholar]
  15. Meyerson M., Counter C. M., Eaton E. N., Ellisen L. W., Steiner P., Caddle S. D., Ziaugra L., Beijersbergen R. L., Davidoff M. J., Liu Q. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997 Aug 22;90(4):785–795. doi: 10.1016/s0092-8674(00)80538-3. [DOI] [PubMed] [Google Scholar]
  16. Morales C. P., Holt S. E., Ouellette M., Kaur K. J., Yan Y., Wilson K. S., White M. A., Wright W. E., Shay J. W. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet. 1999 Jan;21(1):115–118. doi: 10.1038/5063. [DOI] [PubMed] [Google Scholar]
  17. Morin G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989 Nov 3;59(3):521–529. doi: 10.1016/0092-8674(89)90035-4. [DOI] [PubMed] [Google Scholar]
  18. Norrback K. F., Dahlenborg K., Carlsson R., Roos G. Telomerase activation in normal B lymphocytes and non-Hodgkin's lymphomas. Blood. 1996 Jul 1;88(1):222–229. [PubMed] [Google Scholar]
  19. Norrback K. F., Enblad G., Erlanson M., Sundström C., Roos G. Telomerase activity in Hodgkin's disease. Blood. 1998 Jul 15;92(2):567–573. [PubMed] [Google Scholar]
  20. Norrback K. F., Roos G. Telomeres and telomerase in normal and malignant haematopoietic cells. Eur J Cancer. 1997 Apr;33(5):774–780. doi: 10.1016/S0959-8049(97)00059-2. [DOI] [PubMed] [Google Scholar]
  21. Slagboom P. E., Droog S., Boomsma D. I. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994 Nov;55(5):876–882. [PMC free article] [PubMed] [Google Scholar]
  22. Strahl C., Blackburn E. H. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol. 1996 Jan;16(1):53–65. doi: 10.1128/mcb.16.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vaziri H., Dragowska W., Allsopp R. C., Thomas T. E., Harley C. B., Lansdorp P. M. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9857–9860. doi: 10.1073/pnas.91.21.9857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vaziri H., Schächter F., Uchida I., Wei L., Zhu X., Effros R., Cohen D., Harley C. B. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993 Apr;52(4):661–667. [PMC free article] [PubMed] [Google Scholar]
  25. Weng N. P., Granger L., Hodes R. J. Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10827–10832. doi: 10.1073/pnas.94.20.10827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weng N. P., Levine B. L., June C. H., Hodes R. J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11091–11094. doi: 10.1073/pnas.92.24.11091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wright W. E., Shay J. W., Piatyszek M. A. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res. 1995 Sep 25;23(18):3794–3795. doi: 10.1093/nar/23.18.3794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wynford-Thomas D. Proliferative lifespan checkpoints: cell-type specificity and influence on tumour biology. Eur J Cancer. 1997 Apr;33(5):716–726. doi: 10.1016/S0959-8049(97)00064-6. [DOI] [PubMed] [Google Scholar]
  29. van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997 Feb 20;385(6618):740–743. doi: 10.1038/385740a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES