Abstract
We have cloned a human Hevin cDNA from omental adipose tissue of different patients by reverse transcription polymerase chain reaction and shown a sequence variation due to a possible polymorphism at amino acid position 161 (E/G). Hevin protein expressed in vitro showed molecular weights of approximately 75 kDa and 150 kDa, suggesting that Hevin may form a homodimer in vitro. Using Northern blots and a human expressed sequence tAg database analysis, Hevin was shown to be widely expressed in human normal or non-neoplastic diseased tissues with various levels. In contrast to this, its expression was strongly down-regulated in most neoplastic cells or tissues tested. However, neither the mechanism nor the physiological meaning of this down-regulation is known. As an initial step towards investigating the functional role of Hevin in cell growth and differentiation, we transiently or stably expressed this gene in cancer cells (HeLa 3S) that are devoid of endogenous Hevin and measured DNA synthesis (cell proliferation) by 5-bromo-2′-deoxyuridine incorporation. Hevin was shown to be a negative regulator of cell proliferation. Furthermore, we have shown that Hevin can inhibit progression of cells from G1 to S phase or prolong G1 phase. This is the first report which describes the function of Hevin in cell growth and proliferation. Through database analysis, Hevin was found to be located on chromosome 4 which contains loss of heterozygosity of many tumour suppressor genes. Taken together, these results suggest that Hevin may be a candidate for a tumour suppressor gene and a potential target for cancer diagnosis/therapy. © 2000 Cancer Research Campaign
Keywords: Hevin, cancer, tumor suppressor gene, cell cycle, cell proliferation
Full Text
The Full Text of this article is available as a PDF (151.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asamoto M., Hori T., Baba-Toriyama H., Sano M., Takahashi S., Tsuda H., Shirai T. p16 gene overexpression in mouse bladder carcinomas. Cancer Lett. 1998 May 15;127(1-2):9–13. doi: 10.1016/s0304-3835(97)00447-3. [DOI] [PubMed] [Google Scholar]
- Bendik I., Schraml P., Ludwig C. U. Characterization of MAST9/Hevin, a SPARC-like protein, that is down-regulated in non-small cell lung cancer. Cancer Res. 1998 Feb 15;58(4):626–629. [PubMed] [Google Scholar]
- Fulci G., Ishii N., Van Meir E. G. p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol. 1998 Oct;8(4):599–613. doi: 10.1111/j.1750-3639.1998.tb00187.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funk S. E., Sage E. H. The Ca2(+)-binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2648–2652. doi: 10.1073/pnas.88.7.2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girard J. P., Springer T. A. Cloning from purified high endothelial venule cells of hevin, a close relative of the antiadhesive extracellular matrix protein SPARC. Immunity. 1995 Jan;2(1):113–123. doi: 10.1016/1074-7613(95)90083-7. [DOI] [PubMed] [Google Scholar]
- Girard J. P., Springer T. A. Modulation of endothelial cell adhesion by hevin, an acidic protein associated with high endothelial venules. J Biol Chem. 1996 Feb 23;271(8):4511–4517. doi: 10.1074/jbc.271.8.4511. [DOI] [PubMed] [Google Scholar]
- Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gossen M., Freundlieb S., Bender G., Müller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995 Jun 23;268(5218):1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
- Haefner B., Baxter R., Fincham V. J., Downes C. P., Frame M. C. Cooperation of Src homology domains in the regulated binding of phosphatidylinositol 3-kinase. A role for the Src homology 2 domain. J Biol Chem. 1995 Apr 7;270(14):7937–7943. doi: 10.1074/jbc.270.14.7937. [DOI] [PubMed] [Google Scholar]
- Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998 Aug;153(2):333–339. doi: 10.1016/S0002-9440(10)65575-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutoh E., Boss O., Levasseur F., Giacobino J. P. Quantification of the full length leptin receptor (OB-Rb) in human brown and white adipose tissue. Life Sci. 1998;62(5):445–451. doi: 10.1016/s0024-3205(97)01138-7. [DOI] [PubMed] [Google Scholar]
- Kutoh E., Strömstedt P. E., Poellinger L. Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocorticoid receptor by direct protein-protein interaction involving the homeo subdomain of OTF-1. Mol Cell Biol. 1992 Nov;12(11):4960–4969. doi: 10.1128/mcb.12.11.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagadic-Gossmann D., Rissel M., Le Bot M. A., Guillouzo A. Toxic effects of tacrine on primary hepatocytes and liver epithelial cells in culture. Cell Biol Toxicol. 1998 Oct;14(5):361–373. doi: 10.1023/a:1007589808761. [DOI] [PubMed] [Google Scholar]
- Law R. E., Meehan W. P., Xi X. P., Graf K., Wuthrich D. A., Coats W., Faxon D., Hsueh W. A. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest. 1996 Oct 15;98(8):1897–1905. doi: 10.1172/JCI118991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch T. J., Brickner J., Nakano K. J., Orias E. Genetic map of randomly amplified DNA polymorphisms closely linked to the mating type locus of Tetrahymena thermophila. Genetics. 1995 Dec;141(4):1315–1325. doi: 10.1093/genetics/141.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mok S. C., Chan W. Y., Wong K. K., Muto M. G., Berkowitz R. S. SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene. 1996 May 2;12(9):1895–1901. [PubMed] [Google Scholar]
- Nakshatri H., Bouillet P., Bhat-Nakshatri P., Chambon P. Isolation of retinoic acid-repressed genes from P19 embryonal carcinoma cells. Gene. 1996 Sep 26;174(1):79–84. doi: 10.1016/0378-1119(96)00391-5. [DOI] [PubMed] [Google Scholar]
- Nelson P. S., Plymate S. R., Wang K., True L. D., Ware J. L., Gan L., Liu A. Y., Hood L. Hevin, an antiadhesive extracellular matrix protein, is down-regulated in metastatic prostate adenocarcinoma. Cancer Res. 1998 Jan 15;58(2):232–236. [PubMed] [Google Scholar]
- Obata M., Lee G. H., Kanda H., Kitagawa T., Ogawa K. Loss of heterozygosity at loci on chromosome 4, a common genetic event during the spontaneous immortalization of mouse embryonic fibroblasts. Mol Carcinog. 1997 May;19(1):17–24. [PubMed] [Google Scholar]
- Ohh M., Yauch R. L., Lonergan K. M., Whaley J. M., Stemmer-Rachamimov A. O., Louis D. N., Gavin B. J., Kley N., Kaelin W. G., Jr, Iliopoulos O. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998 Jun;1(7):959–968. doi: 10.1016/s1097-2765(00)80096-9. [DOI] [PubMed] [Google Scholar]
- Panotopoulou E., Fidas A., Apostolikas N., Besbeas S., Papas T., Kottaridis D. Isolation of a cDNA clone from colon carcinoma. Anticancer Res. 1997 Sep-Oct;17(5A):3441–3444. [PubMed] [Google Scholar]
- Radany E. H., Hong K., Kesharvarzi S., Lander E. S., Bishop J. M. Mouse mammary tumor virus/v-Ha-ras transgene-induced mammary tumors exhibit strain-specific allelic loss on mouse chromosome 4. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8664–8669. doi: 10.1073/pnas.94.16.8664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ritland S. R., Rowse G. J., Chang Y., Gendler S. J. Loss of heterozygosity analysis in primary mammary tumors and lung metastases of MMTV-MTAg and MMTV-neu transgenic mice. Cancer Res. 1997 Aug 15;57(16):3520–3525. [PubMed] [Google Scholar]
- Santos J., Herranz M., Pérez de Castro I., Pellicer A., Fernández-Piqueras J. A new candidate site for a tumor suppressor gene involved in mouse thymic lymphomagenesis is located on the distal part of chromosome 4. Oncogene. 1998 Aug 20;17(7):925–929. doi: 10.1038/sj.onc.1202009. [DOI] [PubMed] [Google Scholar]
- Shaw R. J., McClatchey A. I., Jacks T. Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem. 1998 Mar 27;273(13):7757–7764. doi: 10.1074/jbc.273.13.7757. [DOI] [PubMed] [Google Scholar]
- Taylor J. F., Coutinho L. L., Herring K. L., Gallagher D. S., Jr, Brenneman R. A., Burney N., Sanders J. O., Turner J. W., Smith S. B., Miller R. K. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle. Anim Genet. 1998 Jun;29(3):194–201. doi: 10.1046/j.1365-2052.1998.00317.x. [DOI] [PubMed] [Google Scholar]
- Vindeløv L. L., Christensen I. J., Keiding N., Spang-Thomsen M., Nissen N. I. Long-term storage of samples for flow cytometric DNA analysis. Cytometry. 1983 Mar;3(5):317–322. doi: 10.1002/cyto.990030502. [DOI] [PubMed] [Google Scholar]
- Weinberg R. A. How cancer arises. Sci Am. 1996 Sep;275(3):62–70. doi: 10.1038/scientificamerican0996-62. [DOI] [PubMed] [Google Scholar]
- Yin D. X., Zhu L., Schimke R. T. Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Anal Biochem. 1996 Mar 15;235(2):195–201. doi: 10.1006/abio.1996.0112. [DOI] [PubMed] [Google Scholar]