Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Mar 21;82(8):1474–1479. doi: 10.1054/bjoc.1999.1081

Characterization of antigen-presenting properties of tumour cells using virus-specific cytotoxic T lymphocytes

D C J Spierings 1, E Agsteribbe 1, J Wilschut 1, A Huckriede 1
PMCID: PMC2363376  PMID: 10780529

Abstract

Immunotherapy of tumours by induction of tumour-specific cytotoxic T-lymphocytes (CTLs) will only be effective for tumours with a functional antigen processing and presentation machinery. However, many tumours are known to down-regulate expression of major histocompatibility complex (MHC) class I molecules and/or to impair antigen processing. It is therefore desirable to evaluate the ability of a given tumour to present antigenic epitopes before developing an immunotherapy protocol. In this study we have used influenza virus as a tool to determine the antigen-presenting capacities of the murine neuroblastoma C1300 cell line NB41A3, a frequently used model for human neuroblastoma. Immunofluorescence analyses revealed low and moderate expression of MHC class I molecules Ddand Kkrespectively. Nevertheless, infected NB41A3 cells were lysed efficiently by influenza-specific CTLs. These results demonstrate that all steps of the antigen-processing pathway function properly in the NB tumour cells, and that the limited MHC class I expression suffices for efficient recognition by CTLs. In addition, lysis of the NB tumour cells shows that the cells are susceptible to CTL-induced apoptosis, a pathway that is often impaired in tumour cells. These characteristics make neuroblastoma a suitable target for immunotherapy. The presented assay allows evaluation of various immunological properties of tumour cells and, thus, represents a valuable tool to assess whether a given tumour will be susceptible to immunotherapy or not. Copyright 2000 Cancer Research Campaign. © 2000 Cancer Research Campaign

Keywords: tumour, antigen presentation, immunotherapy, influenza virus

Full Text

The Full Text of this article is available as a PDF (102.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernards R., Dessain S. K., Weinberg R. A. N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell. 1986 Dec 5;47(5):667–674. doi: 10.1016/0092-8674(86)90509-x. [DOI] [PubMed] [Google Scholar]
  2. Christinck E. R., Luscher M. A., Barber B. H., Williams D. B. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature. 1991 Jul 4;352(6330):67–70. doi: 10.1038/352067a0. [DOI] [PubMed] [Google Scholar]
  3. Darrow T. L., Slingluff C. L., Jr, Seigler H. F. The role of HLA class I antigens in recognition of melanoma cells by tumor-specific cytotoxic T lymphocytes. Evidence for shared tumor antigens. J Immunol. 1989 May 1;142(9):3329–3335. [PubMed] [Google Scholar]
  4. Demotz S., Grey H. M., Sette A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science. 1990 Aug 31;249(4972):1028–1030. doi: 10.1126/science.2118680. [DOI] [PubMed] [Google Scholar]
  5. Ferrone S., Marincola F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today. 1995 Oct;16(10):487–494. doi: 10.1016/0167-5699(95)80033-6. [DOI] [PubMed] [Google Scholar]
  6. Froelich C. J., Orth K., Turbov J., Seth P., Gottlieb R., Babior B., Shah G. M., Bleackley R. C., Dixit V. M., Hanna W. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem. 1996 Nov 15;271(46):29073–29079. doi: 10.1074/jbc.271.46.29073. [DOI] [PubMed] [Google Scholar]
  7. Garrido F., Cabrera T., Concha A., Glew S., Ruiz-Cabello F., Stern P. L. Natural history of HLA expression during tumour development. Immunol Today. 1993 Oct;14(10):491–499. doi: 10.1016/0167-5699(93)90264-L. [DOI] [PubMed] [Google Scholar]
  8. Halloran P. F., Urmson J., Van der Meide P. H., Autenried P. Regulation of MHC expression in vivo. II. IFN-alpha/beta inducers and recombinant IFN-alpha modulate MHC antigen expression in mouse tissues. J Immunol. 1989 Jun 15;142(12):4241–4247. [PubMed] [Google Scholar]
  9. Harding C. V., Unanue E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1990 Aug 9;346(6284):574–576. doi: 10.1038/346574a0. [DOI] [PubMed] [Google Scholar]
  10. Hicklin D. J., Marincola F. M., Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999 Apr;5(4):178–186. doi: 10.1016/s1357-4310(99)01451-3. [DOI] [PubMed] [Google Scholar]
  11. Katsanis E., Xu Z., Bausero M. A., Dancisak B. B., Gorden K. B., Davis G., Gray G. S., Orchard P. J., Blazar B. R. B7-1 expression decreases tumorigenicity and induces partial systemic immunity to murine neuroblastoma deficient in major histocompatibility complex and costimulatory molecules. Cancer Gene Ther. 1995 Mar;2(1):39–46. [PubMed] [Google Scholar]
  12. Khanna R. Tumour surveillance: missing peptides and MHC molecules. Immunol Cell Biol. 1998 Feb;76(1):20–26. doi: 10.1046/j.1440-1711.1998.00717.x. [DOI] [PubMed] [Google Scholar]
  13. Klenk H. D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975 Dec;68(2):426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  14. Lampson L. A., Fisher C. A., Whelan J. P. Striking paucity of HLA-A, B, C and beta 2-microglobulin on human neuroblastoma cell lines. J Immunol. 1983 May;130(5):2471–2478. [PubMed] [Google Scholar]
  15. Lazarowitz S. G., Choppin P. W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975 Dec;68(2):440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  16. Lenardo M., Rustgi A. K., Schievella A. R., Bernards R. Suppression of MHC class I gene expression by N-myc through enhancer inactivation. EMBO J. 1989 Nov;8(11):3351–3355. doi: 10.1002/j.1460-2075.1989.tb08497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Main E. K., Lampson L. A., Hart M. K., Kornbluth J., Wilson D. B. Human neuroblastoma cell lines are susceptible to lysis by natural killer cells but not by cytotoxic T lymphocytes. J Immunol. 1985 Jul;135(1):242–246. [PubMed] [Google Scholar]
  18. Marincola F. M., Shamamian P., Alexander R. B., Gnarra J. R., Turetskaya R. L., Nedospasov S. A., Simonis T. B., Taubenberger J. K., Yannelli J., Mixon A. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J Immunol. 1994 Aug 1;153(3):1225–1237. [PubMed] [Google Scholar]
  19. Marincola F. M., Shamamian P., Simonis T. B., Abati A., Hackett J., O'Dea T., Fetsch P., Yannelli J., Restifo N. P., Mulé J. J. Locus-specific analysis of human leukocyte antigen class I expression in melanoma cell lines. J Immunother Emphasis Tumor Immunol. 1994 Jul;16(1):13–23. doi: 10.1097/00002371-199407000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. doi: 10.1016/s0092-8674(00)81874-7. [DOI] [PubMed] [Google Scholar]
  21. Restifo N. P., Esquivel F., Kawakami Y., Yewdell J. W., Mulé J. J., Rosenberg S. A., Bennink J. R. Identification of human cancers deficient in antigen processing. J Exp Med. 1993 Feb 1;177(2):265–272. doi: 10.1084/jem.177.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rivoltini L., Barracchini K. C., Viggiano V., Kawakami Y., Smith A., Mixon A., Restifo N. P., Topalian S. L., Simonis T. B., Rosenberg S. A. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res. 1995 Jul 15;55(14):3149–3157. [PMC free article] [PubMed] [Google Scholar]
  23. Seliger B., Maeurer M. J., Ferrone S. TAP off--tumors on. Immunol Today. 1997 Jun;18(6):292–299. doi: 10.1016/s0167-5699(97)01052-9. [DOI] [PubMed] [Google Scholar]
  24. Strand S., Galle P. R. Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications. Mol Med Today. 1998 Feb;4(2):63–68. doi: 10.1016/S1357-4310(97)01191-X. [DOI] [PubMed] [Google Scholar]
  25. Sykulev Y., Joo M., Vturina I., Tsomides T. J., Eisen H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996 Jun;4(6):565–571. doi: 10.1016/s1074-7613(00)80483-5. [DOI] [PubMed] [Google Scholar]
  26. Townsend A. R., McMichael A. J., Carter N. P., Huddleston J. A., Brownlee G. G. Cytotoxic T cell recognition of the influenza nucleoprotein and hemagglutinin expressed in transfected mouse L cells. Cell. 1984 Nov;39(1):13–25. doi: 10.1016/0092-8674(84)90187-9. [DOI] [PubMed] [Google Scholar]
  27. Yewdell J. W., Bennink J. R., Smith G. L., Moss B. Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1785–1789. doi: 10.1073/pnas.82.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ziegler M. M., Ishizu H., Nagabuchi E., Takada N., Arya G. A comparative review of the immunobiology of murine neuroblastoma and human neuroblastoma. Cancer. 1997 May 1;79(9):1757–1766. [PubMed] [Google Scholar]
  29. Zier K. S., Pierson G. R., Brown V. Susceptibility of human neuroblastoma cell lines to cytotoxic T lymphocyte-mediated lysis. J Neuroimmunol. 1990 Jul;28(2):153–160. doi: 10.1016/0165-5728(90)90029-m. [DOI] [PubMed] [Google Scholar]
  30. van 't Veer L. J., Beijersbergen R. L., Bernards R. N-myc suppresses major histocompatibility complex class I gene expression through down-regulation of the p50 subunit of NF-kappa B. EMBO J. 1993 Jan;12(1):195–200. doi: 10.1002/j.1460-2075.1993.tb05645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES