Abstract
Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 μM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 μM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign
Keywords: bisphosphonates, breast cancer cells, apoptosis
Full Text
The Full Text of this article is available as a PDF (446.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman R. D., Johnston C. C., Khairi M. R., Wellman H., Serafini A. N., Sankey R. R. Influence of disodium etidronate on clinical and laboratory manifestations of Paget's disease of bone (osteitis deformans). N Engl J Med. 1973 Dec 27;289(26):1379–1384. doi: 10.1056/NEJM197312272892601. [DOI] [PubMed] [Google Scholar]
- Berenson J. R., Lichtenstein A., Porter L., Dimopoulos M. A., Bordoni R., George S., Lipton A., Keller A., Ballester O., Kovacs M. J. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996 Feb 22;334(8):488–493. doi: 10.1056/NEJM199602223340802. [DOI] [PubMed] [Google Scholar]
- Boise L. H., González-García M., Postema C. E., Ding L., Lindsten T., Turka L. A., Mao X., Nuñez G., Thompson C. B. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993 Aug 27;74(4):597–608. doi: 10.1016/0092-8674(93)90508-n. [DOI] [PubMed] [Google Scholar]
- Boissier S., Magnetto S., Frappart L., Cuzin B., Ebetino F. H., Delmas P. D., Clezardin P. Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res. 1997 Sep 15;57(18):3890–3894. [PubMed] [Google Scholar]
- Boonekamp P. M., van der Wee-Pals L. J., van Wijk-van Lennep M. M., Thesing C. W., Bijvoet O. L. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner. 1986 Feb;1(1):27–39. [PubMed] [Google Scholar]
- Bossy-Wetzel E., Newmeyer D. D., Green D. R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 1998 Jan 2;17(1):37–49. doi: 10.1093/emboj/17.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyde A., Maconnachie E., Reid S. A., Delling G., Mundy G. R. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc. 1986;(Pt 4):1537–1554. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Busch M., Rave-Fränk M., Hille A., Dühmke E. Influence of clodronate on breast cancer cells in vitro. Eur J Med Res. 1998 Sep 17;3(9):427–431. [PubMed] [Google Scholar]
- Cardone M. H., Roy N., Stennicke H. R., Salvesen G. S., Franke T. F., Stanbridge E., Frisch S., Reed J. C. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998 Nov 13;282(5392):1318–1321. doi: 10.1126/science.282.5392.1318. [DOI] [PubMed] [Google Scholar]
- Cory A. H., Owen T. C., Barltrop J. A., Cory J. G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991 Jul;3(7):207–212. doi: 10.3727/095535491820873191. [DOI] [PubMed] [Google Scholar]
- Coxon F. P., Benford H. L., Russell R. G., Rogers M. J. Protein synthesis is required for caspase activation and induction of apoptosis by bisphosphonate drugs. Mol Pharmacol. 1998 Oct;54(4):631–638. [PubMed] [Google Scholar]
- Dbaibo G. S., Perry D. K., Gamard C. J., Platt R., Poirier G. G., Obeid L. M., Hannun Y. A. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med. 1997 Feb 3;185(3):481–490. doi: 10.1084/jem.185.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diel I. J., Solomayer E. F., Costa S. D., Gollan C., Goerner R., Wallwiener D., Kaufmann M., Bastert G. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med. 1998 Aug 6;339(6):357–363. doi: 10.1056/NEJM199808063390601. [DOI] [PubMed] [Google Scholar]
- Frith J. C., Mönkkönen J., Blackburn G. M., Russell R. G., Rogers M. J. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res. 1997 Sep;12(9):1358–1367. doi: 10.1359/jbmr.1997.12.9.1358. [DOI] [PubMed] [Google Scholar]
- Golstein P. Controlling cell death. Science. 1997 Feb 21;275(5303):1081–1082. doi: 10.1126/science.275.5303.1081. [DOI] [PubMed] [Google Scholar]
- Hall D. G., Stoica G. Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system. J Bone Miner Res. 1994 Feb;9(2):221–230. doi: 10.1002/jbmr.5650090211. [DOI] [PubMed] [Google Scholar]
- Hortobagyi G. N., Theriault R. L., Lipton A., Porter L., Blayney D., Sinoff C., Wheeler H., Simeone J. F., Seaman J. J., Knight R. D. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol. 1998 Jun;16(6):2038–2044. doi: 10.1200/JCO.1998.16.6.2038. [DOI] [PubMed] [Google Scholar]
- Hughes D. E., MacDonald B. R., Russell R. G., Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest. 1989 Jun;83(6):1930–1935. doi: 10.1172/JCI114100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes D. E., Wright K. R., Uy H. L., Sasaki A., Yoneda T., Roodman G. D., Mundy G. R., Boyce B. F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995 Oct;10(10):1478–1487. doi: 10.1002/jbmr.5650101008. [DOI] [PubMed] [Google Scholar]
- Kanis J. A., Powles T., Paterson A. H., McCloskey E. V., Ashley S. Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone. 1996 Dec;19(6):663–667. doi: 10.1016/s8756-3282(96)00285-2. [DOI] [PubMed] [Google Scholar]
- Kanis J. A., Urwin G. H., Gray R. E., Beneton M. N., McCloskey E. V., Hamdy N. A., Murray S. A. Effects of intravenous etidronate disodium on skeletal and calcium metabolism. Am J Med. 1987 Feb 23;82(2A):55–70. doi: 10.1016/0002-9343(87)90488-8. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993 Sep 1;53(17):3976–3985. [PubMed] [Google Scholar]
- Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., Earnshaw W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994 Sep 22;371(6495):346–347. doi: 10.1038/371346a0. [DOI] [PubMed] [Google Scholar]
- Lin J. H., Duggan D. E., Chen I. W., Ellsworth R. L. Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. Drug Metab Dispos. 1991 Sep-Oct;19(5):926–932. [PubMed] [Google Scholar]
- Luckman S. P., Coxon F. P., Ebetino F. H., Russell R. G., Rogers M. J. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res. 1998 Nov;13(11):1668–1678. doi: 10.1359/jbmr.1998.13.11.1668. [DOI] [PubMed] [Google Scholar]
- Löwik C. W., van der Pluijm G., van der Wee-Pals L. J., van Treslong-De Groot H. B., Bijvoet O. L. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: the effect of a bisphosphonate. J Bone Miner Res. 1988 Apr;3(2):185–192. doi: 10.1002/jbmr.5650030210. [DOI] [PubMed] [Google Scholar]
- Marzo I., Susin S. A., Petit P. X., Ravagnan L., Brenner C., Larochette N., Zamzami N., Kroemer G. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett. 1998 May 8;427(2):198–202. doi: 10.1016/s0014-5793(98)00424-4. [DOI] [PubMed] [Google Scholar]
- McConkey D. J., Orrenius S. Signal transduction pathways in apoptosis. Stem Cells. 1996 Nov;14(6):619–631. doi: 10.1002/stem.140619. [DOI] [PubMed] [Google Scholar]
- Mundy G. R., Yoneda T. Bisphosphonates as anticancer drugs. N Engl J Med. 1998 Aug 6;339(6):398–400. doi: 10.1056/NEJM199808063390609. [DOI] [PubMed] [Google Scholar]
- Paterson A. H., Powles T. J., Kanis J. A., McCloskey E., Hanson J., Ashley S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993 Jan;11(1):59–65. doi: 10.1200/JCO.1993.11.1.59. [DOI] [PubMed] [Google Scholar]
- Plasmans C. M., Kuypers W., Slooff T. J. The effect of ethane-1-hydroxy-1, 1-diphosphonic acid (EHDP) on matrix induced ectopic bone formation. Clin Orthop Relat Res. 1978 May;(132):233–243. [PubMed] [Google Scholar]
- Powell G. J., Southby J., Danks J. A., Stillwell R. G., Hayman J. A., Henderson M. A., Bennett R. C., Martin T. J. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res. 1991 Jun 1;51(11):3059–3061. [PubMed] [Google Scholar]
- Ryzen E., Martodam R. R., Troxell M., Benson A., Paterson A., Shepard K., Hicks R. Intravenous etidronate in the management of malignant hypercalcemia. Arch Intern Med. 1985 Mar;145(3):449–452. [PubMed] [Google Scholar]
- Sasaki A., Boyce B. F., Story B., Wright K. R., Chapman M., Boyce R., Mundy G. R., Yoneda T. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res. 1995 Aug 15;55(16):3551–3557. [PubMed] [Google Scholar]
- Sato M., Grasser W., Endo N., Akins R., Simmons H., Thompson D. D., Golub E., Rodan G. A. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991 Dec;88(6):2095–2105. doi: 10.1172/JCI115539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selander K. S., Mönkkönen J., Karhukorpi E. K., Härkönen P., Hannuniemi R., Vänänen H. K. Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol. 1996 Nov;50(5):1127–1138. [PubMed] [Google Scholar]
- Shipman C. M., Croucher P. I., Russell R. G., Helfrich M. H., Rogers M. J. The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res. 1998 Dec 1;58(23):5294–5297. [PubMed] [Google Scholar]
- Shipman C. M., Rogers M. J., Apperley J. F., Russell R. G., Croucher P. I. Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol. 1997 Sep;98(3):665–672. doi: 10.1046/j.1365-2141.1997.2713086.x. [DOI] [PubMed] [Google Scholar]
- Tewari M., Quan L. T., O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S., Dixit V. M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995 Jun 2;81(5):801–809. doi: 10.1016/0092-8674(95)90541-3. [DOI] [PubMed] [Google Scholar]
- Vitale M., Di Matola T., Rossi G., Laezza C., Fenzi G., Bifulco M. Prenyltransferase inhibitors induce apoptosis in proliferating thyroid cells through a p53-independent CrmA-sensitive, and caspase-3-like protease-dependent mechanism. Endocrinology. 1999 Feb;140(2):698–704. doi: 10.1210/endo.140.2.6494. [DOI] [PubMed] [Google Scholar]
- Wingen F., Eichmann T., Manegold C., Krempien B. Effects of new bisphosphonic acids on tumor-induced bone destruction in the rat. J Cancer Res Clin Oncol. 1986;111(1):35–41. doi: 10.1007/BF00402773. [DOI] [PubMed] [Google Scholar]
- Wosikowski K., Küng W., Hasmann M., Löser R., Eppenberger U. Inhibition of growth-factor-activated proliferation by anti-estrogens and effects on early gene expression of MCF-7 cells. Int J Cancer. 1993 Jan 21;53(2):290–297. doi: 10.1002/ijc.2910530220. [DOI] [PubMed] [Google Scholar]
- Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
- van der Pluijm G., Vloedgraven H., van Beek E., van der Wee-Pals L., Löwik C., Papapoulos S. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest. 1996 Aug 1;98(3):698–705. doi: 10.1172/JCI118841. [DOI] [PMC free article] [PubMed] [Google Scholar]