Abstract
Molecular charge is one of the main determinants of transvascular transport. There are, however, no data available on the effect of molecular charge on microvascular permeability of macromolecules in solid tumours. To this end, we measured tumour microvascular permeability to different proteins having similar size but different charge. Measurements were performed in the human colon adenocarcinoma LS174T transplanted in transparent dorsal skinfold chambers in severe combined immunodeficient (SCID) mice. Bovine serum albumin (BSA) and IgG were fluorescently labelled and were either cationized by conjugation with hexamethylenediamine or anionized by succinylation. The molecules were injected i.v. and the fluorescence in tumour tissue was quantified by intravital fluorescence microscopy. The fluorescence intensity and pharmacokinetic data were used to calculate the microvascular permeability. We found that tumour vascular permeability of cationized BSA (pI-range: 8.6–9.1) and IgG (pI: 8.6–9.3) was more than two-fold higher (4.25 and 4.65 × 10−7cm s−1) than that of the anionized BSA (pI ≈ 2.0) and IgG (pI: 3.0–3.9; 1.11 and 1.93 × 10−7cm s−1, respectively). Our results indicate that positively charged molecules extravasate faster in solid tumours compared to the similar-sized compounds with neutral or negative charges. However, the plasma clearance of cationic molecules was ∼2 × faster than that of anionic ones, indicating that the modification of proteins enhances drug delivery to normal organs as well. Therefore, caution should be exercised when such a strategy is used to improve drug and gene delivery to solid tumours. © 2000 Cancer Research Campaign
Keywords: tumour, vascular permeability, macromolecules, charge, drug delivery
Full Text
The Full Text of this article is available as a PDF (190.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamski S. W., Langone J. J., Grega G. J. Modulation of macromolecular permeability by immune-complexes and a beta-adrenoceptor stimulant. Am J Physiol. 1987 Dec;253(6 Pt 2):H1586–H1595. doi: 10.1152/ajpheart.1987.253.6.H1586. [DOI] [PubMed] [Google Scholar]
- Adamson R. H., Huxley V. H., Curry F. E. Single capillary permeability to proteins having similar size but different charge. Am J Physiol. 1988 Feb;254(2 Pt 2):H304–H312. doi: 10.1152/ajpheart.1988.254.2.H304. [DOI] [PubMed] [Google Scholar]
- Apple R. J., Domen P. L., Muckerheide A., Michael J. G. Cationization of protein antigens. IV. Increased antigen uptake by antigen-presenting cells. J Immunol. 1988 May 15;140(10):3290–3295. [PubMed] [Google Scholar]
- Baldwin A. L., Wu N. Z., Stein D. L. Endothelial surface charge of intestinal mucosal capillaries and its modulation by dextran. Microvasc Res. 1991 Sep;42(2):160–178. doi: 10.1016/0026-2862(91)90084-o. [DOI] [PubMed] [Google Scholar]
- Barrowcliffe M. P., Zanelli G. D., Ellison D., Jones J. G. Clearance of charged and uncharged dextrans from normal and injured lungs. J Appl Physiol (1985) 1990 Jan;68(1):341–347. doi: 10.1152/jappl.1990.68.1.341. [DOI] [PubMed] [Google Scholar]
- Bass P. S., Drake A. F., Wang Y., Thomas J. H., Davies D. R. Cationization of bovine serum albumin alters its conformation as well as its charge. Lab Invest. 1990 Feb;62(2):185–188. [PubMed] [Google Scholar]
- Behr T. M., Sharkey R. M., Juweid M. E., Blumenthal R. D., Dunn R. M., Griffiths G. L., Bair H. J., Wolf F. G., Becker W. S., Goldenberg D. M. Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res. 1995 Sep 1;55(17):3825–3834. [PubMed] [Google Scholar]
- Bosman F. T., Havenith M., Cleutjens J. P. Basement membranes in cancer. Ultrastruct Pathol. 1985;8(4):291–304. doi: 10.3109/01913128509141519. [DOI] [PubMed] [Google Scholar]
- Curry F. E., Rutledge J. C., Lenz J. F. Modulation of microvessel wall charge by plasma glycoprotein orosomucoid. Am J Physiol. 1989 Nov;257(5 Pt 2):H1354–H1359. doi: 10.1152/ajpheart.1989.257.5.H1354. [DOI] [PubMed] [Google Scholar]
- Deen W. M., Satvat B., Jamieson J. M. Theoretical model for glomerular filtration of charged solutes. Am J Physiol. 1980 Feb;238(2):F126–F139. doi: 10.1152/ajprenal.1980.238.2.F126. [DOI] [PubMed] [Google Scholar]
- Dermietzel R., Thürauf N., Kalweit P. Surface charges associated with fenestrated brain capillaries. II. In vivo studies on the role of molecular charge in endothelial permeability. J Ultrastruct Res. 1983 Aug;84(2):111–119. doi: 10.1016/s0022-5320(83)90122-3. [DOI] [PubMed] [Google Scholar]
- Dvorak H. F., Brown L. F., Detmar M., Dvorak A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995 May;146(5):1029–1039. [PMC free article] [PubMed] [Google Scholar]
- Fields R. The measurement of amino groups in proteins and peptides. Biochem J. 1971 Sep;124(3):581–590. doi: 10.1042/bj1240581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandhi R. R., Bell D. R. Importance of charge on transvascular albumin transport in skin and skeletal muscle. Am J Physiol. 1992 Apr;262(4 Pt 2):H999–1008. doi: 10.1152/ajpheart.1992.262.4.H999. [DOI] [PubMed] [Google Scholar]
- Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995 Dec;2(10):710–722. [PubMed] [Google Scholar]
- Gerlowski L. E., Jain R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986 May;31(3):288–305. doi: 10.1016/0026-2862(86)90018-x. [DOI] [PubMed] [Google Scholar]
- Gilchrist S. A., Parker J. C. Exclusion of charged macromolecules in the pulmonary interstitium. Microvasc Res. 1985 Jul;30(1):88–98. doi: 10.1016/0026-2862(85)90041-x. [DOI] [PubMed] [Google Scholar]
- Goldman C. K., Soroceanu L., Smith N., Gillespie G. Y., Shaw W., Burgess S., Bilbao G., Curiel D. T. In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer. Nat Biotechnol. 1997 May;15(5):462–466. doi: 10.1038/nbt0597-462. [DOI] [PubMed] [Google Scholar]
- Haraldsson B., Ekholm C., Rippe B. Importance of molecular charge for the passage of endogenous macromolecules across continuous capillary walls, studied by serum clearance of lactate dehydrogenase (LDH) isoenzymes. Acta Physiol Scand. 1983 Jan;117(1):123–130. doi: 10.1111/j.1748-1716.1983.tb07186.x. [DOI] [PubMed] [Google Scholar]
- Helmlinger G., Yuan F., Dellian M., Jain R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997 Feb;3(2):177–182. doi: 10.1038/nm0297-177. [DOI] [PubMed] [Google Scholar]
- Hoare D. G., Koshland D. E., Jr A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem. 1967 May 25;242(10):2447–2453. [PubMed] [Google Scholar]
- Hobbs S. K., Monsky W. L., Yuan F., Roberts W. G., Griffith L., Torchilin V. P., Jain R. K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607–4612. doi: 10.1073/pnas.95.8.4607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jain R. K. Barriers to drug delivery in solid tumors. Sci Am. 1994 Jul;271(1):58–65. doi: 10.1038/scientificamerican0794-58. [DOI] [PubMed] [Google Scholar]
- Jain R. K. The Eugene M. Landis Award Lecture 1996. Delivery of molecular and cellular medicine to solid tumors. Microcirculation. 1997 Mar;4(1):1–23. doi: 10.3109/10739689709148314. [DOI] [PubMed] [Google Scholar]
- Jain R. K. The next frontier of molecular medicine: delivery of therapeutics. Nat Med. 1998 Jun;4(6):655–657. doi: 10.1038/nm0698-655. [DOI] [PubMed] [Google Scholar]
- Khaw B. A., Klibanov A., O'Donnell S. M., Saito T., Nossiff N., Slinkin M. A., Newell J. B., Strauss H. W., Torchilin V. P. Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J Nucl Med. 1991 Sep;32(9):1742–1751. [PubMed] [Google Scholar]
- Kumagai A. K., Eisenberg J. B., Pardridge W. M. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem. 1987 Nov 5;262(31):15214–15219. [PubMed] [Google Scholar]
- Leunig M., Yuan F., Menger M. D., Boucher Y., Goetz A. E., Messmer K., Jain R. K. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992 Dec 1;52(23):6553–6560. [PubMed] [Google Scholar]
- Leypoldt J. K., Henderson L. W. Molecular charge influences transperitoneal macromolecule transport. Kidney Int. 1993 Apr;43(4):837–844. doi: 10.1038/ki.1993.118. [DOI] [PubMed] [Google Scholar]
- McLean J. W., Fox E. A., Baluk P., Bolton P. B., Haskell A., Pearlman R., Thurston G., Umemoto E. Y., McDonald D. M. Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am J Physiol. 1997 Jul;273(1 Pt 2):H387–H404. doi: 10.1152/ajpheart.1997.273.1.H387. [DOI] [PubMed] [Google Scholar]
- Michel C. C., Phillips M. E. The effects of bovine serum albumin and a form of cationised ferritin upon the molecular selectivity of the walls of single frog capillaries. Microvasc Res. 1985 Mar;29(2):190–203. doi: 10.1016/0026-2862(85)90016-0. [DOI] [PubMed] [Google Scholar]
- Ojteg G., Nygren K., Wolgast M. Permeability of renal capillaries. II. Transport of neutral and charged protein molecular probes. Acta Physiol Scand. 1987 Mar;129(3):287–294. doi: 10.1111/j.1748-1716.1987.tb08071.x. [DOI] [PubMed] [Google Scholar]
- Parker J. C., Gilchrist S., Cartledge J. T. Plasma-lymph exchange and interstitial distribution volumes of charged macromolecules in the lung. J Appl Physiol (1985) 1985 Oct;59(4):1128–1136. doi: 10.1152/jappl.1985.59.4.1128. [DOI] [PubMed] [Google Scholar]
- Presant C. A., Wolf W., Waluch V., Wiseman C., Kennedy P., Blayney D., Brechner R. R. Association of intratumoral pharmacokinetics of fluorouracil with clinical response. Lancet. 1994 May 14;343(8907):1184–1187. doi: 10.1016/s0140-6736(94)92399-x. [DOI] [PubMed] [Google Scholar]
- Rasio E. A., Goresky C. A. Passage of ions and dextran molecules across the rete mirabile of the eel. The effects of charge. Circ Res. 1985 Jul;57(1):74–83. doi: 10.1161/01.res.57.1.74. [DOI] [PubMed] [Google Scholar]
- Rennke H. G., Patel Y., Venkatachalam M. A. Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int. 1978 Apr;13(4):278–288. doi: 10.1038/ki.1978.41. [DOI] [PubMed] [Google Scholar]
- Roberts W. G., Palade G. E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997 Feb 15;57(4):765–772. [PubMed] [Google Scholar]
- Sahagun G., Moore S. A., Hart M. N. Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am J Physiol. 1990 Jul;259(1 Pt 2):H162–H166. doi: 10.1152/ajpheart.1990.259.1.H162. [DOI] [PubMed] [Google Scholar]
- Thurston G., McLean J. W., Rizen M., Baluk P., Haskell A., Murphy T. J., Hanahan D., McDonald D. M. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest. 1998 Apr 1;101(7):1401–1413. doi: 10.1172/JCI965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triguero D., Buciak J. B., Yang J., Pardridge W. M. Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4761–4765. doi: 10.1073/pnas.86.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner M. R., Clough G., Michel C. C. The effects of cationised ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc Res. 1983 Mar;25(2):205–222. doi: 10.1016/0026-2862(83)90016-x. [DOI] [PubMed] [Google Scholar]
- Vehaskari V. M., Chang C. T., Stevens J. K., Robson A. M. The effects of polycations on vascular permeability in the rat. A proposed role for charge sites. J Clin Invest. 1984 Apr;73(4):1053–1061. doi: 10.1172/JCI111290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vink H., Duling B. R. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res. 1996 Sep;79(3):581–589. doi: 10.1161/01.res.79.3.581. [DOI] [PubMed] [Google Scholar]
- Wu N. Z., Klitzman B., Rosner G., Needham D., Dewhirst M. W. Measurement of material extravasation in microvascular networks using fluorescence video-microscopy. Microvasc Res. 1993 Sep;46(2):231–253. doi: 10.1006/mvre.1993.1049. [DOI] [PubMed] [Google Scholar]
- Yamamoto A., Utsumi E., Sakane T., Hamaura T., Nakamura J., Hashida M., Sezaki H. Immunological control of drug absorption from the gastrointestinal tract: the mechanism whereby intestinal anaphylaxis interferes with the intestinal absorption of bromthymol blue in the rat. J Pharm Pharmacol. 1986 May;38(5):357–362. doi: 10.1111/j.2042-7158.1986.tb04587.x. [DOI] [PubMed] [Google Scholar]
- Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995 Sep 1;55(17):3752–3756. [PubMed] [Google Scholar]
- Yuan F., Leunig M., Berk D. A., Jain R. K. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res. 1993 May;45(3):269–289. doi: 10.1006/mvre.1993.1024. [DOI] [PubMed] [Google Scholar]
- Yuan F., Leunig M., Huang S. K., Berk D. A., Papahadjopoulos D., Jain R. K. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994 Jul 1;54(13):3352–3356. [PubMed] [Google Scholar]
