Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Dec;83(12):1755–1761. doi: 10.1054/bjoc.2000.1565

Anti-CD7 antibody and immunotoxin treatment of human CD7+T-cell leukaemia is significantly less effective in NOD/LtSz-scid mice than in CB.17 scid mice

D J Flavell 1, S L Warnes 1, A L Noss 1, S U Flavell 1
PMCID: PMC2363443  PMID: 11104577

Abstract

Groups of 8 to ten SCID (CB.17 scid/scid) or NOD/SCID (NOD/LtSz- scid/scid) mice were injected i.v. with two million human HSB-2 T-ALL cells on day 1 (SCID-HSB-2 and NOD/SCID-HSB-2 mice) and treated later with 3 i.v. 10 μg doses of the anti-CD7 antibody HB2 on days 7, 9 and 11 or with a single 10 μg dose of HB2-SAPORIN or a 7.4 μg dose of HB2-F(ab)2-SAPORIN immunotoxin (IT) on day 7. Treatment of SCID-HSB-2 mice with HB2-SAPORIN led to a significant prolongation in the time to development of signs and symptoms of disease compared with PBS sham-treated controls with 80% of animals surviving disease-free. In contrast treatment with HB2-F(ab)2-SAPORIN was significantly less effective in SCID-HSB-2 mice with 80% of animals in this treatment group developing leukaemia over the course of the study. HB2 antibody treatment of SCID-HSB-2 mice also led to a significant prolongation in time to leukaemia development compared with sham-treated controls with 37% of animals in this treatment group disease-free at termination of the study. In contrast HB2 antibody treatment of NOD/SCID-HSB-2 mice had no therapeutic effect in these animals and the therapeutic effectiveness of both HB2-SAPORIN and HB2-F(ab)2-SAPORIN ITs was similar and significantly reduced compared to the effect observed in SCID-HSB-2 mice. It was initially thought that the lack of therapeutic effect of antibody and IT in NOD-SCID-HSB-2 mice might relate to their putative lack of NK cells but flow cytometric and functional studies with NOD-SCID mouse splenocytes revealed that these animals do have some functional NK cells though fewer in number and possibly lower in functionality than those of SCID mice. We reason that the complete lack of therapeutic effect of HB2 antibody and the reduced effect of HB2-SAPORIN in NOD/SCID mice is due to the reduced cytolytic activity of NOD/SCID NK cells which is probably below a certain critical threshold value in these animals. We conclude from this that immunotherapeutics like HB2-SAPORIN would be more accurately assessed for intrinsic potency in NOD/SCID mice where the effects of NK cell and possibly other non-adaptive immune mechanisms would not have a significant influence. © 2000 Cancer Research Campaign http://www.bjcancer.com

Full Text

The Full Text of this article is available as a PDF (90.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. A., Pothier L., Flowers A., Lazarus H., Farber S., Foley G. E. The question of stemlines in human acute leukemia. Comparison of cells isolated in vitro and in vivo from a patient with acute lymphoblastic leukemia. Exp Cell Res. 1970 Sep;62(1):5–10. doi: 10.1016/0014-4827(79)90504-4. [DOI] [PubMed] [Google Scholar]
  2. Baxter A. G., Cooke A. Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes. 1993 Nov;42(11):1574–1578. doi: 10.2337/diab.42.11.1574. [DOI] [PubMed] [Google Scholar]
  3. Bhatia M., Wang J. C., Kapp U., Bonnet D., Dick J. E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5320–5325. doi: 10.1073/pnas.94.10.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  5. Cesano A., O'Connor R., Lange B., Finan J., Rovera G., Santoli D. Homing and progression patterns of childhood acute lymphoblastic leukemias in severe combined immunodeficiency mice. Blood. 1991 Jun 1;77(11):2463–2474. [PubMed] [Google Scholar]
  6. Christianson S. W., Shultz L. D., Leiter E. H. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes. 1993 Jan;42(1):44–55. doi: 10.2337/diab.42.1.44. [DOI] [PubMed] [Google Scholar]
  7. Cikes M., Friberg S., Jr, Klein G. Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas. J Natl Cancer Inst. 1973 Feb;50(2):347–362. doi: 10.1093/jnci/50.2.347. [DOI] [PubMed] [Google Scholar]
  8. Custer R. P., Bosma G. C., Bosma M. J. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol. 1985 Sep;120(3):464–477. [PMC free article] [PubMed] [Google Scholar]
  9. Dick J. E. Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol. 1996 Aug;8(4):197–206. doi: 10.1006/smim.1996.0025. [DOI] [PubMed] [Google Scholar]
  10. Dorshkind K., Keller G. M., Phillips R. A., Miller R. G., Bosma G. C., O'Toole M., Bosma M. J. Functional status of cells from lymphoid and myeloid tissues in mice with severe combined immunodeficiency disease. J Immunol. 1984 Apr;132(4):1804–1808. [PubMed] [Google Scholar]
  11. Dorshkind K., Pollack S. B., Bosma M. J., Phillips R. A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol. 1985 Jun;134(6):3798–3801. [PubMed] [Google Scholar]
  12. Flavell D. J., Boehm D. A., Noss A., Flavell S. U. Comparison of the potency and therapeutic efficacy of the anti-CD7 immunotoxin HB2-saporin constructed with one or two saporin moieties per immunotoxin molecule. Br J Cancer. 1997;75(7):1035–1043. doi: 10.1038/bjc.1997.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flavell D. J. Modelling human leukemia and lymphoma in severe combined immunodeficient (SCID) mice: practical applications. Hematol Oncol. 1996 Jun;14(2):67–82. doi: 10.1002/(SICI)1099-1069(199606)14:2<67::AID-HON567>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  14. Flavell D. J., Warnes S., Noss A., Flavell S. U. Host-mediated antibody-dependent cellular cytotoxicity contributes to the in vivo therapeutic efficacy of an anti-CD7-saporin immunotoxin in a severe combined immunodeficient mouse model of human T-cell acute lymphoblastic leukemia. Cancer Res. 1998 Dec 15;58(24):5787–5794. [PubMed] [Google Scholar]
  15. Kamel-Reid S., Letarte M., Doedens M., Greaves A., Murdoch B., Grunberger T., Lapidot T., Thorner P., Freedman M. H., Phillips R. A. Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood. 1991 Dec 1;78(11):2973–2981. [PubMed] [Google Scholar]
  16. Kamel-Reid S., Letarte M., Sirard C., Doedens M., Grunberger T., Fulop G., Freedman M. H., Phillips R. A., Dick J. E. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science. 1989 Dec 22;246(4937):1597–1600. doi: 10.1126/science.2595371. [DOI] [PubMed] [Google Scholar]
  17. Kataoka S., Satoh J., Fujiya H., Toyota T., Suzuki R., Itoh K., Kumagai K. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes. 1983 Mar;32(3):247–253. doi: 10.2337/diab.32.3.247. [DOI] [PubMed] [Google Scholar]
  18. Kollmann T. R., Kim A., Zhuang X., Hachamovitch M., Goldstein H. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8032–8036. doi: 10.1073/pnas.91.17.8032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kotloff D. B., Bosma M. J., Ruetsch N. R. Scid mouse Pre-B cells with intracellular mu chains: analysis of recombinase activity and IgH gene rearrangements. Int Immunol. 1993 Apr;5(4):383–391. doi: 10.1093/intimm/5.4.383. [DOI] [PubMed] [Google Scholar]
  20. Lapidot T., Pflumio F., Doedens M., Murdoch B., Williams D. E., Dick J. E. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992 Feb 28;255(5048):1137–1141. doi: 10.1126/science.1372131. [DOI] [PubMed] [Google Scholar]
  21. Morland B. J., Barley J., Boehm D., Flavell S. U., Ghaleb N., Kohler J. A., Okayama K., Wilkins B., Flavell D. J. Effectiveness of HB2 (anti-CD7)--saporin immunotoxin in an in vivo model of human T-cell leukaemia developed in severe combined immunodeficient mice. Br J Cancer. 1994 Feb;69(2):279–285. doi: 10.1038/bjc.1994.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pilarski L. M., Hipperson G., Seeberger K., Pruski E., Coupland R. W., Belch A. R. Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood. 2000 Feb 1;95(3):1056–1065. [PubMed] [Google Scholar]
  23. Prochazka M., Gaskins H. R., Shultz L. D., Leiter E. H. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3290–3294. doi: 10.1073/pnas.89.8.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Serreze D. V., Gaskins H. R., Leiter E. H. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol. 1993 Mar 15;150(6):2534–2543. [PubMed] [Google Scholar]
  25. Serreze D. V., Leiter E. H. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol. 1988 Jun 1;140(11):3801–3807. [PubMed] [Google Scholar]
  26. Shpitz B., Fernandes B. J., Mullen J. B., Roder J. C., Gallinger S. Improved engraftment of human tumours in SCID mice pretreated with radiation and anti-asialo GM1. Anticancer Res. 1994 Sep-Oct;14(5A):1927–1934. [PubMed] [Google Scholar]
  27. Shultz L. D., Schweitzer P. A., Christianson S. W., Gott B., Schweitzer I. B., Tennent B., McKenna S., Mobraaten L., Rajan T. V., Greiner D. L. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995 Jan 1;154(1):180–191. [PubMed] [Google Scholar]
  28. Thorpe P. E., Brown A. N., Bremner J. A., Jr, Foxwell B. M., Stirpe F. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst. 1985 Jul;75(1):151–159. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES