Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Dec;83(12):1747–1754. doi: 10.1054/bjoc.2000.1563

Timing within the oestrous cycle modulates adrenergic suppression of NK activity and resistance to metastasis: possible clinical implications

S Ben-Eliyahu 1, G Shakhar 1, K Shakhar 1, R Melamed 1
PMCID: PMC2363471  PMID: 11104576

Abstract

Clinical observations suggest that the rate of metastatic development and long-term mortality following surgery in breast cancer patients is influenced by the menstrual phase during which surgery is conducted. The menstrual cycle is known to modulate various physiological responses and medical conditions that involve adrenergic mechanisms (e.g., asthma). Natural killer activity (NKA), an immune function controlling metastasis, is suppressed following surgery, and in vitro by adrenaline. We therefore hypothesize that the clinical observation may be partly attributable to surgery-induced adrenergic suppression of NK-dependent resistance to metastasis, a suppression that depends on menstrual phase during surgery. To test this hypothesis in rats, 140 F344 females at different phases of their oestrous cycle were injected with a β-adrenergic agonist, metaproterenol (MP) (0.4 or 0.8 mg kg–1, s.c.), or with vehicle, before i.v. inoculation with MADB106 tumour cells. This syngeneic mammary adenocarcinoma line metastasizes only to the lungs, and is highly sensitive to NKA. In a second experiment, the suppression of NKA by MP was studied in vitro in blood drawn at different phases of the oestrous cycle (n = 36). Finally, the effects of stress on the number and activity of NK cells were assessed along the oestrous cycle (n = 71). The findings indicate that the suppressive effects of MP on resistance to metastasis and on NKA, are significantly greater during the oestrous phase characterized by high oestradiol levels (D3/proestrus/oestrus). Similarly, NKA per cell was suppressed by stress only during this phase. In untreated animals, in which inadvertent stress was minimized, no effects of the oestrous cycle on NKA or on resistance to metastasis were evident. These findings indicate that the oestrous cycle modulates adrenergic suppression of NKA and of resistance to metastasis. The relevance of these findings to the above clinical observation, as well as that of our related findings in women from a parallel study, is discussed. © 2000 Cancer Research Campaign http://www.bjcancer.com

Keywords: oestrous cycle, natural killer, catecholamines, metastasis, immunity

Full Text

The Full Text of this article is available as a PDF (109.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badwe R. A., Gregory W. M., Chaudary M. A., Richards M. A., Bentley A. E., Rubens R. D., Fentiman I. S. Timing of surgery during menstrual cycle and survival of premenopausal women with operable breast cancer. Lancet. 1991 May 25;337(8752):1261–1264. doi: 10.1016/0140-6736(91)92927-t. [DOI] [PubMed] [Google Scholar]
  2. Barlozzari T., Leonhardt J., Wiltrout R. H., Herberman R. B., Reynolds C. W. Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J Immunol. 1985 Apr;134(4):2783–2789. [PubMed] [Google Scholar]
  3. Beitsch P., Lotzová E., Hortobagyi G., Pollock R. Natural immunity in breast cancer patients during neoadjuvant chemotherapy and after surgery. Surg Oncol. 1994 Aug;3(4):211–219. doi: 10.1016/0960-7404(94)90036-1. [DOI] [PubMed] [Google Scholar]
  4. Ben-Eliyahu S., Page G. G., Shakhar G., Taylor A. N. Increased susceptibility to metastasis during pro-oestrus/oestrus in rats: possible role of oestradiol and natural killer cells. Br J Cancer. 1996 Dec;74(12):1900–1907. doi: 10.1038/bjc.1996.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Eliyahu S., Page G. G., Yirmiya R., Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999 Mar 15;80(6):880–888. doi: 10.1002/(sici)1097-0215(19990315)80:6<880::aid-ijc14>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  6. Ben-Eliyahu S., Yirmiya R., Liebeskind J. C., Taylor A. N., Gale R. P. Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system. Brain Behav Immun. 1991 Jun;5(2):193–205. doi: 10.1016/0889-1591(91)90016-4. [DOI] [PubMed] [Google Scholar]
  7. Brenner G. J., Felten S. Y., Felten D. L., Moynihan J. A. Sympathetic nervous system modulation of tumor metastases and host defense mechanisms. J Neuroimmunol. 1992 Apr;37(3):191–201. doi: 10.1016/0165-5728(92)90003-4. [DOI] [PubMed] [Google Scholar]
  8. Brittenden J., Heys S. D., Ross J., Eremin O. Natural killer cells and cancer. Cancer. 1996 Apr 1;77(7):1226–1243. doi: 10.1002/(sici)1097-0142(19960401)77:7<1226::aid-cncr2>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  9. Chambers W. H., Vujanovic N. L., DeLeo A. B., Olszowy M. W., Herberman R. B., Hiserodt J. C. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med. 1989 Apr 1;169(4):1373–1389. doi: 10.1084/jem.169.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Everett J. W. Neurobiology of reproduction in the female rat. A fifty-year perspective. Monogr Endocrinol. 1989;32:1–133. [PubMed] [Google Scholar]
  11. Hellstrand K., Hermodsson S. An immunopharmacological analysis of adrenaline-induced suppression of human natural killer cell cytotoxicity. Int Arch Allergy Appl Immunol. 1989;89(4):334–341. doi: 10.1159/000234972. [DOI] [PubMed] [Google Scholar]
  12. Hrushesky W. J., Bluming A. Z., Gruber S. A., Sothern R. B. Menstrual influence on surgical cure of breast cancer. Lancet. 1989 Oct 21;2(8669):949–952. doi: 10.1016/s0140-6736(89)90956-2. [DOI] [PubMed] [Google Scholar]
  13. Irwin M., Hauger R. L., Jones L., Provencio M., Britton K. T. Sympathetic nervous system mediates central corticotropin-releasing factor induced suppression of natural killer cytotoxicity. J Pharmacol Exp Ther. 1990 Oct;255(1):101–107. [PubMed] [Google Scholar]
  14. Lemon H. M., Rodriguez-Sierra J. F. Timing of breast cancer surgery during the luteal menstrual phase may improve prognosis. Nebr Med J. 1996 Apr;81(4):110–115. [PubMed] [Google Scholar]
  15. Litschauer B., Zauchner S., Huemer K. H., Kafka-Lützow A. Cardiovascular, endocrine, and receptor measures as related to sex and menstrual cycle phase. Psychosom Med. 1998 Mar-Apr;60(2):219–226. doi: 10.1097/00006842-199803000-00019. [DOI] [PubMed] [Google Scholar]
  16. Manhem K., Hansson L., Milsom I., Pilhall M., Jern S. Estrogen and progestagen modify the hemodynamic response to mental stress in young women. Acta Obstet Gynecol Scand. 1996 Jan;75(1):57–62. doi: 10.3109/00016349609033285. [DOI] [PubMed] [Google Scholar]
  17. Muacevic G. Determination of bioavailability on the basis of tachycardia after intravenous and oral administration of fenoterol, orciprenaline and salbutamol in non-anaesthetized rats. Arzneimittelforschung. 1985;35(1A):406–408. [PubMed] [Google Scholar]
  18. Page G. G., Ben-Eliyahu S. Increased surgery-induced metastasis and suppressed natural killer cell activity during proestrus/estrus in rats. Breast Cancer Res Treat. 1997 Sep;45(2):159–167. doi: 10.1023/a:1005826403235. [DOI] [PubMed] [Google Scholar]
  19. Page G. G., Ben-Eliyahu S., Liebeskind J. C. The role of LGL/NK cells in surgery-induced promotion of metastasis and its attenuation by morphine. Brain Behav Immun. 1994 Sep;8(3):241–250. doi: 10.1006/brbi.1994.1022. [DOI] [PubMed] [Google Scholar]
  20. Pollock R. E., Lotzová E., Stanford S. D. Surgical stress impairs natural killer cell programming of tumor for lysis in patients with sarcomas and other solid tumors. Cancer. 1992 Oct 15;70(8):2192–2202. doi: 10.1002/1097-0142(19921015)70:8<2192::aid-cncr2820700830>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  21. Pollock R. E., Zimmerman S. O., Fuchshuber P., Lotzová E. Lytic units reconsidered: pitfalls in calculation and usage. J Clin Lab Anal. 1990;4(4):274–282. doi: 10.1002/jcla.1860040408. [DOI] [PubMed] [Google Scholar]
  22. Ratajczak H. V., Sothern R. B., Hrushesky W. J. Estrous influence on surgical cure of a mouse breast cancer. J Exp Med. 1988 Jul 1;168(1):73–83. doi: 10.1084/jem.168.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saad Z., Bramwell V., Duff J., Girotti M., Jory T., Heathcote G., Turnbull I., Garcia B., Stitt L. Timing of surgery in relation to the menstrual cycle in premenopausal women with operable breast cancer. Br J Surg. 1994 Feb;81(2):217–220. doi: 10.1002/bjs.1800810219. [DOI] [PubMed] [Google Scholar]
  24. Senie R. T., Rosen P. P., Rhodes P., Lesser M. L. Timing of breast cancer excision during the menstrual cycle influences duration of disease-free survival. Ann Intern Med. 1991 Sep 1;115(5):337–342. doi: 10.7326/0003-4819-115-5-337. [DOI] [PubMed] [Google Scholar]
  25. Shakhar G., Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol. 1998 Apr 1;160(7):3251–3258. [PubMed] [Google Scholar]
  26. Shakhar K., Shakhar G., Rosenne E., Ben-Eliyahu S. Timing within the menstrual cycle, sex, and the use of oral contraceptives determine adrenergic suppression of NK cell activity. Br J Cancer. 2000 Dec;83(12):1630–1636. doi: 10.1054/bjoc.2000.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shirakawa T., Tokunaga A., Onda M. Release of immunosuppressive substances after gastric resection is more prolonged than after mastectomy in humans. Int Surg. 1998 Jul-Sep;83(3):210–214. [PubMed] [Google Scholar]
  28. Sulke A. N., Jones D. B., Wood P. J. Hormonal modulation of human natural killer cell activity in vitro. J Reprod Immunol. 1985 Feb;7(2):105–110. doi: 10.1016/0165-0378(85)90064-6. [DOI] [PubMed] [Google Scholar]
  29. Tan K. S., McFarlane L. C., Lipworth B. J. Loss of normal cyclical beta 2 adrenoceptor regulation and increased premenstrual responsiveness to adenosine monophosphate in stable female asthmatic patients. Thorax. 1997 Jul;52(7):608–611. doi: 10.1136/thx.52.7.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Whalen M. M., Bankhurst A. D. Effects of beta-adrenergic receptor activation, cholera toxin and forskolin on human natural killer cell function. Biochem J. 1990 Dec 1;272(2):327–331. doi: 10.1042/bj2720327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wheeldon N. M., Newnham D. M., Coutie W. J., Peters J. A., McDevitt D. G., Lipworth B. J. Influence of sex-steroid hormones on the regulation of lymphocyte beta 2-adrenoceptors during the menstrual cycle. Br J Clin Pharmacol. 1994 Jun;37(6):583–588. doi: 10.1111/j.1365-2125.1994.tb04308.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. White D., Jones D. B., Cooke T., Kirkham N. Natural killer (NK) activity in peripheral blood lymphocytes of patients with benign and malignant breast disease. Br J Cancer. 1982 Oct;46(4):611–616. doi: 10.1038/bjc.1982.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White H. D., Crassi K. M., Givan A. L., Stern J. E., Gonzalez J. L., Memoli V. A., Green W. R., Wira C. R. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol. 1997 Mar 15;158(6):3017–3027. [PubMed] [Google Scholar]
  34. Whiteside T. L., Herberman R. B. The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol. 1995 Oct;7(5):704–710. doi: 10.1016/0952-7915(95)80080-8. [DOI] [PubMed] [Google Scholar]
  35. Wu W. J., Pruett S. B. Suppression of splenic natural killer cell activity in a mouse model for binge drinking. II. Role of the neuroendocrine system. J Pharmacol Exp Ther. 1996 Sep;278(3):1331–1339. [PubMed] [Google Scholar]
  36. van den Brink M. R., Hunt L. E., Hiserodt J. C. In vivo treatment with monoclonal antibody 3.2.3 selectively eliminates natural killer cells in rats. J Exp Med. 1990 Jan 1;171(1):197–210. doi: 10.1084/jem.171.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES