Abstract
2-(4-aminophenyl)benzothiazole (CJM 126) elicits potent growth inhibition in human-derived breast carcinoma cell lines, including oestrogen receptor-positive (ER+) MCF-7wtcells. Analogues substituted in the 3′ position with I (DF 129), CH 3(DF 203), or CI (DF 229) possess an extended profile of antitumour activity with remarkable selective activity in cell lines derived from solid tumours associated with poor prognosis, e.g. breast, ovarian, renal and colon. Growth inhibition occurs via unknown, possibly novel mechanism(s) of action. Two cell lines have been derived from sensitive MCF-7wtbreast cancer cells (IC 50 value < 0.001 μM) following long-term exposure to 10 nM or 10 μM CJM 126, MCF-710 μM 126 and MCF-710 μM 126respectively, which demonstrate acquired resistance to this agent (IC 50> 30 μM) and cross-resistance to DF 129, DF 203 and DF 229. Sensitivity to tamoxifen, benzo[a]pyrene (BP), mitomyin C, doxorubicin and actinomycin D is retained. Resistance may, in part, be conferred by the constitutively increased expression of bcl-2 and p53 proteins detected in MCF-710 nM 126and MCF-710 μM 126lysates. Significantly decreased depletion of CJM 126 (30 μM) from nutrient medium of MCF-710 nM 126cells was observed with predominantly cytoplasmic drug localization and negligible DNA strand breaks. N -acetyl transferase (NAT)1 and NAT2 proteins were expressed by all three MCF-7 sub-lines, but significantly higher expression of NAT2 was accompanied by enhanced acetylation efficacy in MCF-710 nM 126cells. In contrast, CJM 126 (30 μM) was rapidly depleted from nutrient medium of MCF-710 μM 126culture and accessed nuclei of these cells exerting damage to DNA. The major biotransformation product of CJM 126 in MCF-710 μM 126cells was 2-(4-aminophenyl)-6-hydroxybenzothiazole (6-OH 126). This metabolite possessed no antitumour activity. Accordingly, in this sub-line, low constitutive expression and activity of cytochrome P450 (CYP) 1A1 was detected. © 2000 Cancer Research Campaign
Keywords: 2-(4-aminophenyl)benzothiazole; MCF-7, acquired resistance
Full Text
The Full Text of this article is available as a PDF (193.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akman S. A., Forrest G., Chu F. F., Esworthy R. S., Doroshow J. H. Antioxidant and xenobiotic-metabolizing enzyme gene expression in doxorubicin-resistant MCF-7 breast cancer cells. Cancer Res. 1990 Mar 1;50(5):1397–1402. [PubMed] [Google Scholar]
- Batist G., Tulpule A., Sinha B. K., Katki A. G., Myers C. E., Cowan K. H. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986 Nov 25;261(33):15544–15549. [PubMed] [Google Scholar]
- Birnboim H. C., Jevcak J. J. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation. Cancer Res. 1981 May;41(5):1889–1892. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bradshaw T. D., Shi D. F., Schultz R. J., Paull K. D., Kelland L., Wilson A., Garner C., Fiebig H. H., Wrigley S., Stevens M. F. Influence of 2-(4-aminophenyl)benzothiazoles on growth of human ovarian carcinoma cells in vitro and in vivo. Br J Cancer. 1998 Aug;78(4):421–429. doi: 10.1038/bjc.1998.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradshaw T. D., Wrigley S., Shi D. F., Schultz R. J., Paull K. D., Stevens M. F. 2-(4-Aminophenyl)benzothiazoles: novel agents with selective profiles of in vitro anti-tumour activity. Br J Cancer. 1998 Mar;77(5):745–752. doi: 10.1038/bjc.1998.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caruso J. A., Batist G. Divergent mechanisms for loss of Ah-responsiveness in benzo[a]pyrene- and adriamycinR-resistant MCF-7 cells. Biochem Pharmacol. 1999 Jun 1;57(11):1253–1263. doi: 10.1016/s0006-2952(99)00041-6. [DOI] [PubMed] [Google Scholar]
- Chua M. S., Shi D. F., Wrigley S., Bradshaw T. D., Hutchinson I., Shaw P. N., Barrett D. A., Stanley L. A., Stevens M. F. Antitumor benzothiazoles. 7. Synthesis of 2-(4-acylaminophenyl)benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines. J Med Chem. 1999 Feb 11;42(3):381–392. doi: 10.1021/jm981076x. [DOI] [PubMed] [Google Scholar]
- Crofts F. G., Sutter T. R., Strickland P. T. Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis. 1998 Nov;19(11):1969–1973. doi: 10.1093/carcin/19.11.1969. [DOI] [PubMed] [Google Scholar]
- Hayes J. D., Wolf C. R. Molecular mechanisms of drug resistance. Biochem J. 1990 Dec 1;272(2):281–295. doi: 10.1042/bj2720281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivy S. P., Tulpule A., Fairchild C. R., Averbuch S. D., Myers C. E., Nebert D. W., Baird W. M., Cowan K. H. Altered regulation of P-450IA1 expression in a multidrug-resistant MCF-7 human breast cancer cell line. J Biol Chem. 1988 Dec 15;263(35):19119–19125. [PubMed] [Google Scholar]
- Kashiyama E., Hutchinson I., Chua M. S., Stinson S. F., Phillips L. R., Kaur G., Sausville E. A., Bradshaw T. D., Westwell A. D., Stevens M. F. Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)benzothiazoles. J Med Chem. 1999 Oct 7;42(20):4172–4184. doi: 10.1021/jm990104o. [DOI] [PubMed] [Google Scholar]
- Kinzler K. W., Vogelstein B. Cancer therapy meets p53. N Engl J Med. 1994 Jul 7;331(1):49–50. doi: 10.1056/NEJM199407073310113. [DOI] [PubMed] [Google Scholar]
- Kress S., Greenlee W. F. Cell-specific regulation of human CYP1A1 and CYP1B1 genes. Cancer Res. 1997 Apr 1;57(7):1264–1269. [PubMed] [Google Scholar]
- Malcomson R. D., Oren M., Wyllie A. H., Harrison D. J. p53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs. Br J Cancer. 1995 Oct;72(4):952–957. doi: 10.1038/bjc.1995.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastrakuljic A., Tang B. K., Roberts E. A., Kalow W. Distinction of CYP1A1 and CYP1A2 activity by selective inhibition using fluvoxamine and isosafrole. Biochem Pharmacol. 1997 Feb 21;53(4):531–538. doi: 10.1016/s0006-2952(96)00769-1. [DOI] [PubMed] [Google Scholar]
- Pelkonen O., Raunio H. Metabolic activation of toxins: tissue-specific expression and metabolism in target organs. Environ Health Perspect. 1997 Jun;105 (Suppl 4):767–774. doi: 10.1289/ehp.97105s4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sadrieh N., Davis C. D., Snyderwine E. G. N-acetyltransferase expression and metabolic activation of the food-derived heterocyclic amines in the human mammary gland. Cancer Res. 1996 Jun 15;56(12):2683–2687. [PubMed] [Google Scholar]
- Shi D. F., Bradshaw T. D., Wrigley S., McCall C. J., Lelieveld P., Fichtner I., Stevens M. F. Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem. 1996 Aug 16;39(17):3375–3384. doi: 10.1021/jm9600959. [DOI] [PubMed] [Google Scholar]
- Sinha B. K., Katki A. G., Batist G., Cowan K. H., Myers C. E. Differential formation of hydroxyl radicals by adriamycin in sensitive and resistant MCF-7 human breast tumor cells: implications for the mechanism of action. Biochemistry. 1987 Jun 30;26(13):3776–3781. doi: 10.1021/bi00387a006. [DOI] [PubMed] [Google Scholar]
- Stevens M. F., McCall C. J., Lelieveld P., Alexander P., Richter A., Davies D. E. Structural studies on bioactive compounds. 23. Synthesis of polyhydroxylated 2-phenylbenzothiazoles and a comparison of their cytotoxicities and pharmacological properties with genistein and quercetin. J Med Chem. 1994 May 27;37(11):1689–1695. doi: 10.1021/jm00037a020. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Myers T. G., O'Connor P. M., Friend S. H., Fornace A. J., Jr, Kohn K. W., Fojo T., Bates S. E., Rubinstein L. V., Anderson N. L. An information-intensive approach to the molecular pharmacology of cancer. Science. 1997 Jan 17;275(5298):343–349. doi: 10.1126/science.275.5298.343. [DOI] [PubMed] [Google Scholar]