Abstract
Bispecific antibodies (bsAb) are considered as promising tools for the elimination of disseminated tumour cells in a minimal residual disease situation. The bsAb-mediated recruitment of an immune effector cell in close vicinity of a tumour cell is thought to induce an antitumoural immune response. However, classical bispecific molecules activate only a single class of immune effector cell that may not yield optimal immune responses. We therefore constructed an intact bispecific antibody, BiUII (anti-CD3 × anti-EpCAM), that not only recognizes tumour cells and T lymphocytes with its two binding arms, but also binds and activates Fcγ-receptor positive accessory cells through its Fc-region. We have demonstrated recently that activated accessory cells contribute to the bsAb-induced antitumoural activity. We now analyse this stimulation in more detail and demonstrate here the BiUll-induced upregulation of activation markers like CD83 and CD95 on accessory cells and the induction of neopterin and biopterin synthesis. Experiments with pure cell subpopulations revealed binding of BiUll to CD64+ accessory cells and CD16+ NK cells, but not to CD32+ B lymphocytes. We provide further evidence for the importance of the Fc-region in that this bispecific molecule stimulates Fcγ-R-positive accessory cells to eliminate tumour cells in vitro by direct phagocytosis. © 2000 Cancer Research Campaign
Keywords: phagocytosis, accessory cells, bispecific antibody, tumour
Full Text
The Full Text of this article is available as a PDF (98.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cella M., Scheidegger D., Palmer-Lehmann K., Lane P., Lanzavecchia A., Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996 Aug 1;184(2):747–752. doi: 10.1084/jem.184.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clynes R., Takechi Y., Moroi Y., Houghton A., Ravetch J. V. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):652–656. doi: 10.1073/pnas.95.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czerniecki B. J., Carter C., Rivoltini L., Koski G. K., Kim H. I., Weng D. E., Roros J. G., Hijazi Y. M., Xu S., Rosenberg S. A. Calcium ionophore-treated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J Immunol. 1997 Oct 15;159(8):3823–3837. [PubMed] [Google Scholar]
- Daniel P. T., Kroidl A., Kopp J., Sturm I., Moldenhauer G., Dörken B., Pezzutto A. Immunotherapy of B-cell lymphoma with CD3x19 bispecific antibodies: costimulation via CD28 prevents "veto" apoptosis of antibody-targeted cytotoxic T cells. Blood. 1998 Dec 15;92(12):4750–4757. [PubMed] [Google Scholar]
- Fanger M. W., Segal D. M., Wunderlich J. R. Going both ways: bispecific antibodies and targeted cellular cytotoxicity. FASEB J. 1990 Aug;4(11):2846–2849. doi: 10.1096/fasebj.4.11.2199282. [DOI] [PubMed] [Google Scholar]
- Haagen I. A., Geerars A. J., Clark M. R., van de Winkel J. G. Interaction of human monocyte Fc gamma receptors with rat IgG2b. A new indicator for the Fc gamma RIIa (R-H131) polymorphism. J Immunol. 1995 Feb 15;154(4):1852–1860. [PubMed] [Google Scholar]
- Heo D. S., Park J. G., Hata K., Day R., Herberman R. B., Whiteside T. L. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res. 1990 Jun 15;50(12):3681–3690. [PubMed] [Google Scholar]
- Inaba K., Steinman R. M. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med. 1984 Dec 1;160(6):1717–1735. doi: 10.1084/jem.160.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerler F., Hültner L., Ziegler I., Katzenmaier G., Bacher A. Analysis of the tetrahydrobiopterin synthesizing system during maturation of murine reticulocytes. J Cell Physiol. 1990 Feb;142(2):268–271. doi: 10.1002/jcp.1041420208. [DOI] [PubMed] [Google Scholar]
- Klein S. C., Boer L. H., de Weger R. A., de Gast G. C., Bast E. J. Release of cytokines and soluble cell surface molecules by PBMC after activation with the bispecific antibody CD3 x CD19. Scand J Immunol. 1997 Nov;46(5):452–458. doi: 10.1046/j.1365-3083.1997.d01-151.x. [DOI] [PubMed] [Google Scholar]
- Lindhofer H., Menzel H., Günther W., Hültner L., Thierfelder S. Bispecific antibodies target operationally tumor-specific antigens in two leukemia relapse models. Blood. 1996 Dec 15;88(12):4651–4658. [PubMed] [Google Scholar]
- Lindhofer H., Mocikat R., Steipe B., Thierfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol. 1995 Jul 1;155(1):219–225. [PubMed] [Google Scholar]
- Mayer B., Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci. 1997 Dec;22(12):477–481. doi: 10.1016/s0968-0004(97)01147-x. [DOI] [PubMed] [Google Scholar]
- McLellan A. D., Sorg R. V., Williams L. A., Hart D. N. Human dendritic cells activate T lymphocytes via a CD40: CD40 ligand-dependent pathway. Eur J Immunol. 1996 Jun;26(6):1204–1210. doi: 10.1002/eji.1830260603. [DOI] [PubMed] [Google Scholar]
- Medvedev A. E., Johnsen A. C., Haux J., Steinkjer B., Egeberg K., Lynch D. H., Sundan A., Espevik T. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine. 1997 Jun;9(6):394–404. doi: 10.1006/cyto.1996.0181. [DOI] [PubMed] [Google Scholar]
- Quak J. J., Van Dongen G., Brakkee J. G., Hayashida D. J., Balm A. J., Snow G. B., Meijer C. J. Production of a monoclonal antibody (K 931) to a squamous cell carcinoma associated antigen identified as the 17-1A antigen. Hybridoma. 1990 Aug;9(4):377–387. doi: 10.1089/hyb.1990.9.377. [DOI] [PubMed] [Google Scholar]
- Ridge J. P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998 Jun 4;393(6684):474–478. doi: 10.1038/30989. [DOI] [PubMed] [Google Scholar]
- Robertson M. J., Manley T. J., Pichert G., Cameron C., Cochran K. J., Levine H., Ritz J. Functional consequences of APO-1/Fas (CD95) antigen expression by normal and neoplastic hematopoietic cells. Leuk Lymphoma. 1995 Mar;17(1-2):51–61. doi: 10.3109/10428199509051703. [DOI] [PubMed] [Google Scholar]
- Schott K., Gütlich M., Ziegler I. Induction of GTP-cyclohydrolase I mRNA expression by lectin activation and interferon-gamma treatment in human cells associated with the immune response. J Cell Physiol. 1993 Jul;156(1):12–16. doi: 10.1002/jcp.1041560103. [DOI] [PubMed] [Google Scholar]
- Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
- Stuber E., Strober W., Neurath M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med. 1996 Feb 1;183(2):693–698. doi: 10.1084/jem.183.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valerius T., Stockmeyer B., van Spriel A. B., Graziano R. F., van den Herik-Oudijk I. E., Repp R., Deo Y. M., Lund J., Kalden J. R., Gramatzki M. FcalphaRI (CD89) as a novel trigger molecule for bispecific antibody therapy. Blood. 1997 Dec 1;90(11):4485–4492. [PubMed] [Google Scholar]
- Van Gool S. W., Vandenberghe P., de Boer M., Ceuppens J. L. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev. 1996 Oct;153:47–83. doi: 10.1111/j.1600-065x.1996.tb00920.x. [DOI] [PubMed] [Google Scholar]
- Weiner L. M., Clark J. I., Ring D. B., Alpaugh R. K. Clinical development of 2B1, a bispecific murine monoclonal antibody targeting c-erbB-2 and Fc gamma RIII. J Hematother. 1995 Oct;4(5):453–456. doi: 10.1089/scd.1.1995.4.453. [DOI] [PubMed] [Google Scholar]
- Weiner L. M., Holmes M., Adams G. P., LaCreta F., Watts P., Garcia de Palazzo I. A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16. Cancer Res. 1993 Jan 1;53(1):94–100. [PubMed] [Google Scholar]
- Zeidler R., Reisbach G., Wollenberg B., Lang S., Chaubal S., Schmitt B., Lindhofer H. Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol. 1999 Aug 1;163(3):1246–1252. [PubMed] [Google Scholar]
- Zhou L. J., Tedder T. F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2588–2592. doi: 10.1073/pnas.93.6.2588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziegler I. Production of pteridines during hematopoiesis and T-lymphocyte proliferation: potential participation in the control of cytokine signal transmission. Med Res Rev. 1990 Jan-Mar;10(1):95–114. doi: 10.1002/med.2610100104. [DOI] [PubMed] [Google Scholar]
- de Gast G. C., Haagen I. A., van Houten A. A., Klein S. C., Duits A. J., de Weger R. A., Vroom T. M., Clark M. R., Phillips J., van Dijk A. J. CD8 T cell activation after intravenous administration of CD3 x CD19 bispecific antibody in patients with non-Hodgkin lymphoma. Cancer Immunol Immunother. 1995 Jun;40(6):390–396. doi: 10.1007/BF01525390. [DOI] [PMC free article] [PubMed] [Google Scholar]