Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jun 15;83(2):246–251. doi: 10.1054/bjoc.2000.1238

Gene expression profiles of human endometrial cancer samples using a cDNA-expression array technique: assessment of an analysis method

E Smid-Koopman 1, L J Blok 3, S Chadha-Ajwani 2, T J M Helmerhorst 1, A O Brinkmann 3, F J Huikeshoven 1
PMCID: PMC2363496  PMID: 10901378

Abstract

The recently developed cDNA expression array technique can be used to generate gene-expression fingerprints of tumour specimens. To gain insight into molecular mechanisms involved in the development and progression of cancer, this cDNA expression array technique could be a useful tool, however, no established methods for interpreting the results are yet available. We used the Atlas cancer cDNA expression array (Clontech, USA) for analysing total RNA isolated from four human endometrial carcinoma samples (two cell-lines and two tissue samples), one benign endometrial tissue sample and a human breast cancer cell-line, in order to develop a method for analysing the array data. The obtained gene-expression profiles were highly reproducible. XY-scatterplots and regression analysis of the logarithmic transformed data provided a practical method to analyse the data without the need of preceding normalization. Three genes (Decorin, TIMP3 and Cyclin D1) were identified to be differentially expressed between the benign endometrial tissue sample and the endometrial carcinoma samples (tissue and cell-lines). These three genes may potentially be involved in cancer progression. A higher degree of similarity in gene-expression profile was found between the endometrial samples (tissue and cell-lines) than between the endometrial samples and the breast cancer cell-line, which is indicative for an endometrial tissue-specific gene-expression profile. © 2000 Cancer Research Campaign

Keywords: cDNA expression array, genes, endometrial cancer

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blok L. J., Chang G. T., Steenbeek-Slotboom M., van Weerden W. M., Swarts H. G., De Pont J. J., van Steenbrugge G. J., Brinkmann A. O. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer. Br J Cancer. 1999 Sep;81(1):28–36. doi: 10.1038/sj.bjc.6690647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blok L. J., Grossmann M. E., Perry J. E., Tindall D. J. Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol. 1995 Nov;9(11):1610–1620. doi: 10.1210/mend.9.11.8584037. [DOI] [PubMed] [Google Scholar]
  3. Chang G. T., Blok L. J., Steenbeek M., Veldscholte J., van Weerden W. M., van Steenbrugge G. J., Brinkmann A. O. Differentially expressed genes in androgen-dependent and -independent prostate carcinomas. Cancer Res. 1997 Sep 15;57(18):4075–4081. [PubMed] [Google Scholar]
  4. Hilsenbeck S. G., Friedrichs W. E., Schiff R., O'Connell P., Hansen R. K., Osborne C. K., Fuqua S. A. Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J Natl Cancer Inst. 1999 Mar 3;91(5):453–459. doi: 10.1093/jnci/91.5.453. [DOI] [PubMed] [Google Scholar]
  5. Hoch R. V., Thompson D. A., Baker R. J., Weigel R. J. GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer. 1999 Apr 20;84(2):122–128. doi: 10.1002/(sici)1097-0215(19990420)84:2<122::aid-ijc5>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  6. Iozzo R. V., Chakrani F., Perrotti D., McQuillan D. J., Skorski T., Calabretta B., Eichstetter I. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3092–3097. doi: 10.1073/pnas.96.6.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaiser A., Brembeck F. H., v Marschall Z., Riecken E. O., Wiedenmann B., Rosewicz S. Fra-1: a novel target for retinoid action. FEBS Lett. 1999 Apr 1;448(1):45–48. doi: 10.1016/s0014-5793(99)00326-9. [DOI] [PubMed] [Google Scholar]
  8. Knudson A. G. All in the (cancer) family. Nat Genet. 1993 Oct;5(2):103–104. doi: 10.1038/ng1093-103. [DOI] [PubMed] [Google Scholar]
  9. Kugler A. Matrix metalloproteinases and their inhibitors. Anticancer Res. 1999 Mar-Apr;19(2C):1589–1592. [PubMed] [Google Scholar]
  10. Lentz S. S. Advanced and recurrent endometrial carcinoma: hormonal therapy. Semin Oncol. 1994 Feb;21(1):100–106. [PubMed] [Google Scholar]
  11. Mikuta J. J. International Federation of Gynecology and Obstetrics staging of endometrial cancer 1988. Cancer. 1993 Feb 15;71(4 Suppl):1460–1463. doi: 10.1002/cncr.2820710409. [DOI] [PubMed] [Google Scholar]
  12. Rhee C. H., Hess K., Jabbur J., Ruiz M., Yang Y., Chen S., Chenchik A., Fuller G. N., Zhang W. cDNA expression array reveals heterogeneous gene expression profiles in three glioblastoma cell lines. Oncogene. 1999 Apr 29;18(17):2711–2717. doi: 10.1038/sj.onc.1202623. [DOI] [PubMed] [Google Scholar]
  13. Rose P. G. Endometrial carcinoma. N Engl J Med. 1996 Aug 29;335(9):640–649. doi: 10.1056/NEJM199608293350907. [DOI] [PubMed] [Google Scholar]
  14. Russell A., Thompson M. A., Hendley J., Trute L., Armes J., Germain D. Cyclin D1 and D3 associate with the SCF complex and are coordinately elevated in breast cancer. Oncogene. 1999 Mar 18;18(11):1983–1991. doi: 10.1038/sj.onc.1202511. [DOI] [PubMed] [Google Scholar]
  15. Sato H., Kida Y., Mai M., Endo Y., Sasaki T., Tanaka J., Seiki M. Expression of genes encoding type IV collagen-degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells. Oncogene. 1992 Jan;7(1):77–83. [PubMed] [Google Scholar]
  16. Schottenfeld D. Epidemiology of endometrial neoplasia. J Cell Biochem Suppl. 1995;23:151–159. doi: 10.1002/jcb.240590920. [DOI] [PubMed] [Google Scholar]
  17. Shim C., Zhang W., Rhee C. H., Lee J. H. Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res. 1998 Dec;4(12):3045–3050. [PubMed] [Google Scholar]
  18. Ständer M., Naumann U., Wick W., Weller M. Transforming growth factor-beta and p-21: multiple molecular targets of decorin-mediated suppression of neoplastic growth. Cell Tissue Res. 1999 May;296(2):221–227. doi: 10.1007/s004410051283. [DOI] [PubMed] [Google Scholar]
  19. Tong W., Pollard J. W. Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. Mol Cell Biol. 1999 Mar;19(3):2251–2264. doi: 10.1128/mcb.19.3.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zwijsen R. M., Wientjens E., Klompmaker R., van der Sman J., Bernards R., Michalides R. J. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997 Feb 7;88(3):405–415. doi: 10.1016/s0092-8674(00)81879-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES