Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Aug 16;83(5):642–649. doi: 10.1054/bjoc.2000.1322

Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells

D Coelho 1, V Holl 1, D Weltin 1, T Lacornerie 2, P Magnenet 2, P Dufour 1, P Bischoff 1
PMCID: PMC2363500  PMID: 10944606

Abstract

Caspases, a family of cysteine proteases, play a central role in the pathways leading to apoptosis. Recently, it has been reported that a broad spectrum inhibitor of caspases, the tripeptide Z-VAD-fmk, induced a switch from apoptosis to necrosis in dexamethasone-treated B lymphocytes and thymocytes. As such a cell death conversion could increase the efficiency of radiation therapy and in order to identify the caspases involved in this cell death transition, we investigated the effects of caspase-3-related proteases inhibition in irradiated MOLT-4 cells. Cells were pretreated with Ac-DEVD-CHO, an inhibitor of caspase-3-like activity, and submitted to X-rays at doses ranging from 1 to 4 Gy. Our results show that the inhibition of caspase-3-like activity prevents completely the appearance of the classical hallmarks of apoptosis such as internucleosomal DNA fragmentation or hypodiploid particles formation and partially the externalization of phosphatidylserine. However, this was not accompanied by any persistent increase in cell survival. Instead, irradiated cells treated by this inhibitor exhibited characteristics of a necrotic cell death. Therefore, functional caspase-3-subfamily not only appears as key proteases in the execution of the apoptotic process, but their activity may also influence the type of cell death following an exposure to ionizing radiation. © 2000 Cancer Research Campaign

Keywords: apoptosis, necrosis, caspase, ionizing radiation, MOLT-4

Full Text

The Full Text of this article is available as a PDF (186.2 KB).

Footnotes

The two first authors contributed equally to this study.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belka C., Marini P., Budach W., Schulze-Osthoff K., Lang F., Gulbins E., Bamberg M. Radiation-induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up-regulation of CD95/Fas/APO-1 ligand. Radiat Res. 1998 Jun;149(6):588–595. [PubMed] [Google Scholar]
  2. Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994 Jan;15(1):7–10. doi: 10.1016/0167-5699(94)90018-3. [DOI] [PubMed] [Google Scholar]
  3. Chandler J. M., Cohen G. M., MacFarlane M. Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. J Biol Chem. 1998 May 1;273(18):10815–10818. doi: 10.1074/jbc.273.18.10815. [DOI] [PubMed] [Google Scholar]
  4. Cohen G. M. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326(Pt 1):1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datta R., Kojima H., Banach D., Bump N. J., Talanian R. V., Alnemri E. S., Weichselbaum R. R., Wong W. W., Kufe D. W. Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J Biol Chem. 1997 Jan 17;272(3):1965–1969. doi: 10.1074/jbc.272.3.1965. [DOI] [PubMed] [Google Scholar]
  6. Eguchi Y., Shimizu S., Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997 May 15;57(10):1835–1840. [PubMed] [Google Scholar]
  7. Fernandes-Alnemri T., Takahashi A., Armstrong R., Krebs J., Fritz L., Tomaselli K. J., Wang L., Yu Z., Croce C. M., Salveson G. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 1995 Dec 15;55(24):6045–6052. [PubMed] [Google Scholar]
  8. Gurtu V., Kain S. R., Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem. 1997 Aug 15;251(1):98–102. doi: 10.1006/abio.1997.2220. [DOI] [PubMed] [Google Scholar]
  9. Ha H. C., Snyder S. H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13978–13982. doi: 10.1073/pnas.96.24.13978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haimovitz-Friedman A., Kan C. C., Ehleiter D., Persaud R. S., McLoughlin M., Fuks Z., Kolesnick R. N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994 Aug 1;180(2):525–535. doi: 10.1084/jem.180.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hallan E., Blomhoff H. K., Smeland E. B., Lømo J. Involvement of ICE (Caspase) family in gamma-radiation-induced apoptosis of normal B lymphocytes. Scand J Immunol. 1997 Dec;46(6):601–608. doi: 10.1046/j.1365-3083.1997.d01-173.x. [DOI] [PubMed] [Google Scholar]
  12. Han Z., Hendrickson E. A., Bremner T. A., Wyche J. H. A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem. 1997 May 16;272(20):13432–13436. doi: 10.1074/jbc.272.20.13432. [DOI] [PubMed] [Google Scholar]
  13. Herceg Z., Wang Z. Q. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol. 1999 Jul;19(7):5124–5133. doi: 10.1128/mcb.19.7.5124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirsch T., Marchetti P., Susin S. A., Dallaporta B., Zamzami N., Marzo I., Geuskens M., Kroemer G. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene. 1997 Sep 25;15(13):1573–1581. doi: 10.1038/sj.onc.1201324. [DOI] [PubMed] [Google Scholar]
  15. Leist M., Single B., Castoldi A. F., Kühnle S., Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997 Apr 21;185(8):1481–1486. doi: 10.1084/jem.185.8.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lemaire C., Andréau K., Souvannavong V., Adam A. Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett. 1998 Mar 27;425(2):266–270. doi: 10.1016/s0014-5793(98)00252-x. [DOI] [PubMed] [Google Scholar]
  17. Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997 Nov 14;91(4):479–489. doi: 10.1016/s0092-8674(00)80434-1. [DOI] [PubMed] [Google Scholar]
  18. Machleidt T., Geller P., Schwandner R., Scherer G., Krönke M. Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Lett. 1998 Sep 25;436(1):51–54. doi: 10.1016/s0014-5793(98)01095-3. [DOI] [PubMed] [Google Scholar]
  19. McCarthy N. J., Whyte M. K., Gilbert C. S., Evan G. I. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol. 1997 Jan 13;136(1):215–227. doi: 10.1083/jcb.136.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McConkey D. J. Biochemical determinants of apoptosis and necrosis. Toxicol Lett. 1998 Nov 12;99(3):157–168. doi: 10.1016/s0378-4274(98)00155-6. [DOI] [PubMed] [Google Scholar]
  21. Melcher A., Gough M., Todryk S., Vile R. Apoptosis or necrosis for tumor immunotherapy: what's in a name? J Mol Med (Berl) 1999 Dec;77(12):824–833. doi: 10.1007/s001099900066. [DOI] [PubMed] [Google Scholar]
  22. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  23. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  24. Reiter I., Krammer B., Schwamberger G. Cutting edge: differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities. J Immunol. 1999 Aug 15;163(4):1730–1732. [PubMed] [Google Scholar]
  25. Richter C., Schweizer M., Cossarizza A., Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996 Jan 8;378(2):107–110. doi: 10.1016/0014-5793(95)01431-4. [DOI] [PubMed] [Google Scholar]
  26. Sané A. T., Bertrand R. Caspase inhibition in camptothecin-treated U-937 cells is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death. Cancer Res. 1999 Aug 1;59(15):3565–3569. [PubMed] [Google Scholar]
  27. Sauter B., Albert M. L., Francisco L., Larsson M., Somersan S., Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000 Feb 7;191(3):423–434. doi: 10.1084/jem.191.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stefanelli C., Bonavita F., Stanic' I., Farruggia G., Falcieri E., Robuffo I., Pignatti C., Muscari C., Rossoni C., Guarnieri C. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem J. 1997 Mar 15;322(Pt 3):909–917. doi: 10.1042/bj3220909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
  30. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  31. Verhoven B., Schlegel R. A., Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995 Nov 1;182(5):1597–1601. doi: 10.1084/jem.182.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yu Y., Little J. B. p53 is involved in but not required for ionizing radiation-induced caspase-3 activation and apoptosis in human lymphoblast cell lines. Cancer Res. 1998 Oct 1;58(19):4277–4281. [PubMed] [Google Scholar]
  33. Zheng T. S., Schlosser S. F., Dao T., Hingorani R., Crispe I. N., Boyer J. L., Flavell R. A. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13618–13623. doi: 10.1073/pnas.95.23.13618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhivotovsky B., Joseph B., Orrenius S. Tumor radiosensitivity and apoptosis. Exp Cell Res. 1999 Apr 10;248(1):10–17. doi: 10.1006/excr.1999.4452. [DOI] [PubMed] [Google Scholar]
  35. Zwaal R. F., Schroit A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997 Feb 15;89(4):1121–1132. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES