Abstract
To identify targets of genetic and epigenetic alterations on chromosome 11p15.5 in human bladder cancer, expression of the imprinted KIP2, IGF2 and H19 genes was studied by quantitative RT-PCR in 24 paired samples of urothelial carcinomas and morphologically normal mucosa obtained by cystectomy, and in bladder carcinoma cell lines. The most frequent alteration in tumour tissue was decreased expression of KIP2 identified in 9/24 (37%) specimens. Decreased IGF2 and H19 mRNA levels were found in five (21%) and three (13%) tumours, respectively. One tumour each overexpressed IGF2 and H19. Loss of H19 expression was only found associated with loss of KIP2 expression, whereas decreased expression of IGF2 mRNA occurred independently. Almost all bladder carcinoma cell lines showed significant changes in the expression of at least one gene with diminished expression of KIP2 mRNA as the most frequent alteration. IGF2 mRNA levels were diminished in several lines, but increased in others. The KIP2 gene could be an important target of genetic and epigenetic alterations in bladder cancer affecting the maternal chromosome 11p15.5. However, reminiscent of the situation in Wilms’ tumours, expression of the IGF2 gene on the paternal chromosome can also be disturbed in bladder cancers. © 2000 Cancer Research Campaign
Keywords: chromosome 11p15.5, IGF-II, H19, quantitative RT-PCR, LOH analysis
Full Text
The Full Text of this article is available as a PDF (150.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An H. X., Niederacher D., Picard F., van Roeyen C., Bender H. G., Beckmann M. W. Frequent allele loss on 9p21-22 defines a smallest common region in the vicinity of the CDKN2 gene in sporadic breast cancer. Genes Chromosomes Cancer. 1996 Sep;17(1):14–20. doi: 10.1002/(SICI)1098-2264(199609)17:1<14::AID-GCC3>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Clasen S., Schulz W. A., Gerharz C. D., Grimm M. O., Christoph F., Schmitz-Dräger B. J. Frequent and heterogeneous expression of cyclin-dependent kinase inhibitor WAF1/p21 protein and mRNA in urothelial carcinoma. Br J Cancer. 1998 Feb;77(4):515–521. doi: 10.1038/bjc.1998.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elkin M., Shevelev A., Schulze E., Tykocinsky M., Cooper M., Ariel I., Pode D., Kopf E., de Groot N., Hochberg A. The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett. 1995 Oct 23;374(1):57–61. doi: 10.1016/0014-5793(95)01074-o. [DOI] [PubMed] [Google Scholar]
- Gibas Z., Gibas L. Cytogenetics of bladder cancer. Cancer Genet Cytogenet. 1997 May;95(1):108–115. doi: 10.1016/s0165-4608(96)00295-6. [DOI] [PubMed] [Google Scholar]
- Grimm M. O., Jürgens B., Schulz W. A., Decken K., Makri D., Schmitz-Dräger B. J. Inactivation of tumor suppressor genes and deregulation of the c-myc gene in urothelial cancer cell lines. Urol Res. 1995;23(5):293–300. doi: 10.1007/BF00300017. [DOI] [PubMed] [Google Scholar]
- Habuchi T., Ogawa O., Kakehi Y., Ogura K., Koshiba M., Hamazaki S., Takahashi R., Sugiyama T., Yoshida O. Accumulated allelic losses in the development of invasive urothelial cancer. Int J Cancer. 1993 Feb 20;53(4):579–584. doi: 10.1002/ijc.2910530409. [DOI] [PubMed] [Google Scholar]
- Hatada I., Inazawa J., Abe T., Nakayama M., Kaneko Y., Jinno Y., Niikawa N., Ohashi H., Fukushima Y., Iida K. Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors. Hum Mol Genet. 1996 Jun;5(6):783–788. doi: 10.1093/hmg/5.6.783. [DOI] [PubMed] [Google Scholar]
- Jürgens B., Schmitz-Dräger B. J., Schulz W. A. Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma. Cancer Res. 1996 Dec 15;56(24):5698–5703. [PubMed] [Google Scholar]
- Karnik P., Chen P., Paris M., Yeger H., Williams B. R. Loss of heterozygosity at chromosome 11p15 in Wilms tumors: identification of two independent regions. Oncogene. 1998 Jul 16;17(2):237–240. doi: 10.1038/sj.onc.1201959. [DOI] [PubMed] [Google Scholar]
- Kondo M., Matsuoka S., Uchida K., Osada H., Nagatake M., Takagi K., Harper J. W., Takahashi T., Elledge S. J., Takahashi T. Selective maternal-allele loss in human lung cancers of the maternally expressed p57KIP2 gene at 11p15.5. Oncogene. 1996 Mar 21;12(6):1365–1368. [PubMed] [Google Scholar]
- Lee M. H., Reynisdóttir I., Massagué J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995 Mar 15;9(6):639–649. doi: 10.1101/gad.9.6.639. [DOI] [PubMed] [Google Scholar]
- Lee M. P., DeBaun M. R., Mitsuya K., Galonek H. L., Brandenburg S., Oshimura M., Feinberg A. P. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5203–5208. doi: 10.1073/pnas.96.9.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. P., DeBaun M., Randhawa G., Reichard B. A., Elledge S. J., Feinberg A. P. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet. 1997 Aug;61(2):304–309. doi: 10.1086/514858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., Tilghman S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995 May 4;375(6526):34–39. doi: 10.1038/375034a0. [DOI] [PubMed] [Google Scholar]
- Liu J., Kahri A. I., Heikkilä P., Voutilainen R. Ribonucleic acid expression of the clustered imprinted genes, p57KIP2, insulin-like growth factor II, and H19, in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab. 1997 Jun;82(6):1766–1771. doi: 10.1210/jcem.82.6.3968. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Edwards M. C., Bai C., Parker S., Zhang P., Baldini A., Harper J. W., Elledge S. J. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995 Mar 15;9(6):650–662. doi: 10.1101/gad.9.6.650. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Thompson J. S., Edwards M. C., Bartletta J. M., Grundy P., Kalikin L. M., Harper J. W., Elledge S. J., Feinberg A. P. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3026–3030. doi: 10.1073/pnas.93.7.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCann A. H., Miller N., O'Meara A., Pedersen I., Keogh K., Gorey T., Dervan P. A. Biallelic expression of the IGF2 gene in human breast disease. Hum Mol Genet. 1996 Aug;5(8):1123–1127. doi: 10.1093/hmg/5.8.1123. [DOI] [PubMed] [Google Scholar]
- Mori M., Inoue H., Shiraishi T., Mimori K., Shibuta K., Nakashima H., Mafune K., Tanaka Y., Ueo H., Barnard G. F. Relaxation of insulin-like growth factor 2 gene imprinting in esophageal cancer. Int J Cancer. 1996 Nov 15;68(4):441–446. doi: 10.1002/(SICI)1097-0215(19961115)68:4<441::AID-IJC7>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Moulton T., Crenshaw T., Hao Y., Moosikasuwan J., Lin N., Dembitzer F., Hensle T., Weiss L., McMorrow L., Loew T. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet. 1994 Jul;7(3):440–447. doi: 10.1038/ng0794-440. [DOI] [PubMed] [Google Scholar]
- Nonomura N., Nishimura K., Miki T., Kanno N., Kojima Y., Yokoyama M., Okuyama A. Loss of imprinting of the insulin-like growth factor II gene in renal cell carcinoma. Cancer Res. 1997 Jul 1;57(13):2575–2577. [PubMed] [Google Scholar]
- O'Keefe D., Dao D., Zhao L., Sanderson R., Warburton D., Weiss L., Anyane-Yeboa K., Tycko B. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet. 1997 Aug;61(2):295–303. doi: 10.1086/514854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oda H., Kume H., Shimizu Y., Inoue T., Ishikawa T. Loss of imprinting of igf2 in renal-cell carcinomas. Int J Cancer. 1998 Jan 30;75(3):343–346. doi: 10.1002/(sici)1097-0215(19980130)75:3<343::aid-ijc3>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Ogawa O., Eccles M. R., Szeto J., McNoe L. A., Yun K., Maw M. A., Smith P. J., Reeve A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature. 1993 Apr 22;362(6422):749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
- Okamoto K., Morison I. M., Taniguchi T., Reeve A. E. Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5367–5371. doi: 10.1073/pnas.94.10.5367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oya M., Schmidt B., Schmitz-Dräger B. J., Schulz W. A. Expression of G1-->S transition regulatory molecules in human urothelial cancer. Jpn J Cancer Res. 1998 Jul;89(7):719–726. doi: 10.1111/j.1349-7006.1998.tb03276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
- Reid L. H., Crider-Miller S. J., West A., Lee M. H., Massagué J., Weissman B. E. Genomic organization of the human p57KIP2 gene and its analysis in the G401 Wilms' tumor assay. Cancer Res. 1996 Mar 15;56(6):1214–1218. [PubMed] [Google Scholar]
- Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
- Schulz W. A., Krummeck A., Rösinger I., Eickelmann P., Neuhaus C., Ebert T., Schmitz-Dräger B. J., Sies H. Increased frequency of a null-allele for NAD(P)H: quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics. 1997 Jun;7(3):235–239. doi: 10.1097/00008571-199706000-00008. [DOI] [PubMed] [Google Scholar]
- Shaw M. E., Knowles M. A. Deletion mapping of chromosome 11 in carcinoma of the bladder. Genes Chromosomes Cancer. 1995 May;13(1):1–8. doi: 10.1002/gcc.2870130102. [DOI] [PubMed] [Google Scholar]
- Smilinich N. J., Day C. D., Fitzpatrick G. V., Caldwell G. M., Lossie A. C., Cooper P. R., Smallwood A. C., Joyce J. A., Schofield P. N., Reik W. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064–8069. doi: 10.1073/pnas.96.14.8064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
- Tadokoro K., Fujii H., Inoue T., Yamada M. Polymerase chain reaction (PCR) for detection of ApaI polymorphism at the insulin like growth factor II gene (IGF2). Nucleic Acids Res. 1991 Dec 25;19(24):6967–6967. doi: 10.1093/nar/19.24.6967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi T., Sullivan M. J., Ogawa O., Reeve A. E. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2159–2163. doi: 10.1073/pnas.92.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokino T., Urano T., Furuhata T., Matsushima M., Miyatsu T., Sasaki S., Nakamura Y. Characterization of the human p57KIP2 gene: alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis. Hum Genet. 1996 May;97(5):625–631. doi: 10.1007/BF02281873. [DOI] [PubMed] [Google Scholar]
- Uyeno S., Aoki Y., Nata M., Sagisaka K., Kayama T., Yoshimoto T., Ono T. IGF2 but not H19 shows loss of imprinting in human glioma. Cancer Res. 1996 Dec 1;56(23):5356–5359. [PubMed] [Google Scholar]
- Voorter C. E., Ummelen M. I., Ramaekers F. S., Hopman A. H. Loss of chromosome 11 and 11 p/q imbalances in bladder cancer detected by fluorescence in situ hybridization. Int J Cancer. 1996 Jan 26;65(3):301–307. doi: 10.1002/(SICI)1097-0215(19960126)65:3<301::AID-IJC4>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
- Zhang P., Wong C., DePinho R. A., Harper J. W., Elledge S. J. Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev. 1998 Oct 15;12(20):3162–3167. doi: 10.1101/gad.12.20.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
