Abstract
The anti-vascular action of the tubulin binding agent combretastatin A-4 phosphate (CA-4-P) has been quantified in two types of murine tumour, the breast adenocarcinoma CaNT and the round cell sarcoma SaS. The functional vascular volume, assessed using a fluorescent carbocyanine dye, was significantly reduced at 18 h after CA-4-P treatment in both tumour types, although the degree of reduction was very different in the two tumours. The SaS tumour, which has a higher nitric oxide synthase (NOS) activity than the CaNT tumour, showed ~10-fold greater resistance to vascular damage by CA-4-P. This is consistent with our previous findings, which showed that NO exerts a protective action against this drug. Simultaneous administration of CA-4-P with a NOS inhibitor, Nω-nitro-L-arginine (L-NNA), resulted in enhanced vascular damage and cytotoxicity in both tumour types. Administration of diethylamine NO, an NO donor, conferred protection against the vascular damaging effects. Following treatment with CA-4-P, neutrophil infiltration into the tumours, measured by myeloperoxidase (MPO) activity, was significantly increased. Levels of MPO activity also correlated with the levels of vascular injury and cytotoxicity measured in both tumour types. Neutrophilic MPO generates free radicals and may therefore contribute to the vascular damage associated with CA-4-P treatment. MPO activity was significantly increased in the presence of L-NNA, suggesting that the protective effect of NO against CA-4-P-induced vascular injury may be, at least partially, mediated by limiting neutrophil infiltration. The data are consistent with the hypothesis that neutrophil action contributes to vascular injury by CA-4-P and that NO generation acts to protect the tumour vasculature against CA4-P-induced injury. The protective effect of NO is probably associated with an anti-neutrophil action. © 2000 Cancer Research Campaign
Full Text
The Full Text of this article is available as a PDF (172.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. F., Patel K. B., Reghebi K., Hill S. A. Conversion of xanthine dehydrogenase to xanthine oxidase as a possible marker for hypoxia in tumours and normal tissues. Br J Cancer. 1989 Aug;60(2):193–197. doi: 10.1038/bjc.1989.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaplin D. J., Pettit G. R., Hill S. A. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res. 1999 Jan-Feb;19(1A):189–195. [PubMed] [Google Scholar]
- Chaplin D. J., Pettit G. R., Parkins C. S., Hill S. A. Antivascular approaches to solid tumour therapy: evaluation of tubulin binding agents. Br J Cancer Suppl. 1996 Jul;27:S86–S88. [PMC free article] [PubMed] [Google Scholar]
- Dark G. G., Hill S. A., Prise V. E., Tozer G. M., Pettit G. R., Chaplin D. J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997 May 15;57(10):1829–1834. [PubMed] [Google Scholar]
- Eiserich J. P., Cross C. E., Jones A. D., Halliwell B., van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996 Aug 9;271(32):19199–19208. doi: 10.1074/jbc.271.32.19199. [DOI] [PubMed] [Google Scholar]
- Eiserich J. P., Estévez A. G., Bamberg T. V., Ye Y. Z., Chumley P. H., Beckman J. S., Freeman B. A. Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6365–6370. doi: 10.1073/pnas.96.11.6365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eiserich J. P., Hristova M., Cross C. E., Jones A. D., Freeman B. A., Halliwell B., van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998 Jan 22;391(6665):393–397. doi: 10.1038/34923. [DOI] [PubMed] [Google Scholar]
- Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990 Jan 3;82(1):4–6. doi: 10.1093/jnci/82.1.4. [DOI] [PubMed] [Google Scholar]
- Grisham M. B., Hernandez L. A., Granger D. N. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol. 1986 Oct;251(4 Pt 1):G567–G574. doi: 10.1152/ajpgi.1986.251.4.G567. [DOI] [PubMed] [Google Scholar]
- Grosios K., Holwell S. E., McGown A. T., Pettit G. R., Bibby M. C. In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer. 1999 Dec;81(8):1318–1327. doi: 10.1038/sj.bjc.6692174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill S. A., Sampson L. E., Chaplin D. J. Anti-vascular approaches to solid tumour therapy: evaluation of vinblastine and flavone acetic acid. Int J Cancer. 1995 Sep 27;63(1):119–123. doi: 10.1002/ijc.2910630121. [DOI] [PubMed] [Google Scholar]
- Horsman M. R., Ehrnrooth E., Ladekarl M., Overgaard J. The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumors. Int J Radiat Oncol Biol Phys. 1998 Nov 1;42(4):895–898. doi: 10.1016/s0360-3016(98)00299-5. [DOI] [PubMed] [Google Scholar]
- Hotter G., Closa D., Prats N., Pi F., Gelpí E., Roselló-Catafau J. Free radical enhancement promotes leucocyte recruitment through a PAF and LTB4 dependent mechanism. Free Radic Biol Med. 1997;22(6):947–954. doi: 10.1016/s0891-5849(96)00494-7. [DOI] [PubMed] [Google Scholar]
- Iyer S., Chaplin D. J., Rosenthal D. S., Boulares A. H., Li L. Y., Smulson M. E. Induction of apoptosis in proliferating human endothelial cells by the tumor-specific antiangiogenesis agent combretastatin A-4. Cancer Res. 1998 Oct 15;58(20):4510–4514. [PubMed] [Google Scholar]
- Kettle A. J., van Dalen C. J., Winterbourn C. C. Peroxynitrite and myeloperoxidase leave the same footprint in protein nitration. Redox Rep. 1997 Oct-Dec;3(5-6):257–258. doi: 10.1080/13510002.1997.11747120. [DOI] [PubMed] [Google Scholar]
- Korbelik M., Parkins C. S., Shibuya H., Cecic I., Stratford M. R., Chaplin D. J. Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy. Br J Cancer. 2000 Jun;82(11):1835–1843. doi: 10.1054/bjoc.2000.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkins C. S., Dennis M. F., Stratford M. R., Hill S. A., Chaplin D. J. Ischemia reperfusion injury in tumors: the role of oxygen radicals and nitric oxide. Cancer Res. 1995 Dec 15;55(24):6026–6029. [PubMed] [Google Scholar]
- Parkins C. S., Hill S. A., Lonergan S. J., Horsman M. R., Chadwick J. A., Chaplin D. J. Ischaemia induced cell death in tumors: importance of temperature and pH. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):499–503. doi: 10.1016/0360-3016(94)90445-6. [DOI] [PubMed] [Google Scholar]
- Parkins C. S., Hill S. A., Stratford M. R., Dennis M. F., Chaplin D. J. Metabolic and clonogenic consequences of ischaemia reperfusion insult in solid tumours. Exp Physiol. 1997 Mar;82(2):361–368. doi: 10.1113/expphysiol.1997.sp004031. [DOI] [PubMed] [Google Scholar]
- Parkins C. S., Holder A. L., Dennis M. F., Stratford M. R., Chaplin D. J. Involvement of oxygen free radicals in ischaemia-reperfusion injury to murine tumours: role of nitric oxide. Free Radic Res. 1998 Mar;28(3):271–281. doi: 10.3109/10715769809069279. [DOI] [PubMed] [Google Scholar]
- Pettit G. R., Singh S. B., Hamel E., Lin C. M., Alberts D. S., Garcia-Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia. 1989 Feb 15;45(2):209–211. doi: 10.1007/BF01954881. [DOI] [PubMed] [Google Scholar]
- Skoufias D. A., Wilson L. Assembly and colchicine binding characteristics of tubulin with maximally tyrosinated and detyrosinated alpha-tubulins. Arch Biochem Biophys. 1998 Mar 1;351(1):115–122. doi: 10.1006/abbi.1997.0510. [DOI] [PubMed] [Google Scholar]
- Tozer G. M., Prise V. E., Wilson J., Locke R. J., Vojnovic B., Stratford M. R., Dennis M. F., Chaplin D. J. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res. 1999 Apr 1;59(7):1626–1634. [PubMed] [Google Scholar]
- Trotter M. J., Chaplin D. J., Olive P. L. Use of a carbocyanine dye as a marker of functional vasculature in murine tumours. Br J Cancer. 1989 May;59(5):706–709. doi: 10.1038/bjc.1989.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watts M. E., Woodcock M., Arnold S., Chaplin D. J. Effects of novel and conventional anti-cancer agents on human endothelial permeability: influence of tumour secreted factors. Anticancer Res. 1997 Jan-Feb;17(1A):71–75. [PubMed] [Google Scholar]
- Wink D. A., Hanbauer I., Krishna M. C., DeGraff W., Gamson J., Mitchell J. B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813–9817. doi: 10.1073/pnas.90.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods J. A., Hadfield J. A., Pettit G. R., Fox B. W., McGown A. T. The interaction with tubulin of a series of stilbenes based on combretastatin A-4. Br J Cancer. 1995 Apr;71(4):705–711. doi: 10.1038/bjc.1995.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Vliet A., Eiserich J. P., Halliwell B., Cross C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem. 1997 Mar 21;272(12):7617–7625. doi: 10.1074/jbc.272.12.7617. [DOI] [PubMed] [Google Scholar]
