Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Aug 17;83(6):817–825. doi: 10.1054/bjoc.2000.1327

P21-dependent G 1 arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228

V Sandor 1, A Senderowicz 2, S Mertins 1, D Sackett 1, E Sausville 2, M V Blagosklonny 1, S E Bates 1
PMCID: PMC2363539  PMID: 10952788

Abstract

Depsipeptide, FR901228, a novel cyclic peptide inhibitor of histone deacetylase with a unique cytotoxicity profile is currently in phase I clinical trials. Here we demonstrate that, in addition to G2/M arrest, FR901228 causes G1 arrest with Rb hypophosphorylation. In vitro kinase assays demonstrated no direct inhibition of CDK activity, however, an inhibition was observed in CDKs extracted from cells exposed to FR901228. Cyclin D1 protein disappeared between 6 and 12 hours after treatment with FR901228, whereas cyclin E was upregulated. While it did not induce wt p53, FR901228 did induce p21WAF1/CIP1in a p53-independent manner. Cell clones lacking p21 were not arrested in G1 phase, but continued DNA synthesis and were arrested in G2/M phase following FR901228 treatment. Finally, FR901228 blunted ERK-2/MAPK activation by EGF whereas early signal transduction events remained intact since overall cellular tyrosine phosphorylation after EGF stimulation was unaffected. Thus, FR901228, while not directly inhibiting kinase activity, causes cyclin D1 downregulation and a p53-independent p21 induction, leading to inhibition of CDK and dephosphorylation of Rb resulting in growth arrest in the early G1 phase. In contrast to the G1 arrest, the G2/M arrest is p21-independent, but is associated with significant cytotoxicity. © 2000 Cancer Research Campaign

Keywords: experimental therapeutic, cell cycle, cyclin, p21, cytotoxicity

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktas H., Cai H., Cooper G. M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol. 1997 Jul;17(7):3850–3857. doi: 10.1128/mcb.17.7.3850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archer S. Y., Meng S., Shei A., Hodin R. A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6791–6796. doi: 10.1073/pnas.95.12.6791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blagosklonny M. V. A node between proliferation, apoptosis, and growth arrest. Bioessays. 1999 Aug;21(8):704–709. doi: 10.1002/(SICI)1521-1878(199908)21:8<704::AID-BIES10>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  4. Botz J., Zerfass-Thome K., Spitkovsky D., Delius H., Vogt B., Eilers M., Hatzigeorgiou A., Jansen-Dürr P. Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol Cell Biol. 1996 Jul;16(7):3401–3409. doi: 10.1128/mcb.16.7.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brehm A., Miska E. A., McCance D. J., Reid J. L., Bannister A. J., Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998 Feb 5;391(6667):597–601. doi: 10.1038/35404. [DOI] [PubMed] [Google Scholar]
  6. Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J. P., Sedivy J. M., Kinzler K. W., Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998 Nov 20;282(5393):1497–1501. doi: 10.1126/science.282.5393.1497. [DOI] [PubMed] [Google Scholar]
  7. Campisi J., Medrano E. E., Morreo G., Pardee A. B. Restriction point control of cell growth by a labile protein: evidence for increased stability in transformed cells. Proc Natl Acad Sci U S A. 1982 Jan;79(2):436–440. doi: 10.1073/pnas.79.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Candido E. P., Reeves R., Davie J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 1978 May;14(1):105–113. doi: 10.1016/0092-8674(78)90305-7. [DOI] [PubMed] [Google Scholar]
  9. Chen X., Bargonetti J., Prives C. p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res. 1995 Oct 1;55(19):4257–4263. [PubMed] [Google Scholar]
  10. DeGregori J., Leone G., Ohtani K., Miron A., Nevins J. R. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev. 1995 Dec 1;9(23):2873–2887. doi: 10.1101/gad.9.23.2873. [DOI] [PubMed] [Google Scholar]
  11. Grignani F., De Matteis S., Nervi C., Tomassoni L., Gelmetti V., Cioce M., Fanelli M., Ruthardt M., Ferrara F. F., Zamir I. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998 Feb 19;391(6669):815–818. doi: 10.1038/35901. [DOI] [PubMed] [Google Scholar]
  12. Hunter T. Oncoprotein networks. Cell. 1997 Feb 7;88(3):333–346. doi: 10.1016/s0092-8674(00)81872-3. [DOI] [PubMed] [Google Scholar]
  13. Jacks T., Weinberg R. A. Cell-cycle control and its watchman. Nature. 1996 Jun 20;381(6584):643–644. doi: 10.1038/381643a0. [DOI] [PubMed] [Google Scholar]
  14. Johnson D. G., Schwarz J. K., Cress W. D., Nevins J. R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature. 1993 Sep 23;365(6444):349–352. doi: 10.1038/365349a0. [DOI] [PubMed] [Google Scholar]
  15. Juan G., Li X., Darzynkiewicz Z. Phosphorylation of retinoblastoma protein assayed in individual HL-60 cells during their proliferation and differentiation. Exp Cell Res. 1998 Oct 10;244(1):83–92. doi: 10.1006/excr.1998.4165. [DOI] [PubMed] [Google Scholar]
  16. Kim Y. B., Lee K. H., Sugita K., Yoshida M., Horinouchi S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene. 1999 Apr 15;18(15):2461–2470. doi: 10.1038/sj.onc.1202564. [DOI] [PubMed] [Google Scholar]
  17. Kosugi H., Towatari M., Hatano S., Kitamura K., Kiyoi H., Kinoshita T., Tanimoto M., Murate T., Kawashima K., Saito H. Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia. 1999 Sep;13(9):1316–1324. doi: 10.1038/sj.leu.2401508. [DOI] [PubMed] [Google Scholar]
  18. Lee J. S., Paull K., Alvarez M., Hose C., Monks A., Grever M., Fojo A. T., Bates S. E. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol Pharmacol. 1994 Oct;46(4):627–638. [PubMed] [Google Scholar]
  19. Lin R. J., Nagy L., Inoue S., Shao W., Miller W. H., Jr, Evans R. M. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998 Feb 19;391(6669):811–814. doi: 10.1038/35895. [DOI] [PubMed] [Google Scholar]
  20. Luo R. X., Postigo A. A., Dean D. C. Rb interacts with histone deacetylase to repress transcription. Cell. 1998 Feb 20;92(4):463–473. doi: 10.1016/s0092-8674(00)80940-x. [DOI] [PubMed] [Google Scholar]
  21. Magnaghi-Jaulin L., Groisman R., Naguibneva I., Robin P., Lorain S., Le Villain J. P., Troalen F., Trouche D., Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998 Feb 5;391(6667):601–605. doi: 10.1038/35410. [DOI] [PubMed] [Google Scholar]
  22. Nakajima H., Kim Y. B., Terano H., Yoshida M., Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 1998 May 25;241(1):126–133. doi: 10.1006/excr.1998.4027. [DOI] [PubMed] [Google Scholar]
  23. Nevins J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 1998 Aug;9(8):585–593. [PubMed] [Google Scholar]
  24. Oswald F., Lovec H., Möröy T., Lipp M. E2F-dependent regulation of human MYC: trans-activation by cyclins D1 and A overrides tumour suppressor protein functions. Oncogene. 1994 Jul;9(7):2029–2036. [PubMed] [Google Scholar]
  25. Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Polyak K., Waldman T., He T. C., Kinzler K. W., Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 1996 Aug 1;10(15):1945–1952. doi: 10.1101/gad.10.15.1945. [DOI] [PubMed] [Google Scholar]
  27. Rajgolikar G., Chan K. K., Wang H. C. Effects of a novel antitumor depsipeptide, FR901228, on human breast cancer cells. Breast Cancer Res Treat. 1998 Sep;51(1):29–38. doi: 10.1023/a:1006091014092. [DOI] [PubMed] [Google Scholar]
  28. Richon V. M., Emiliani S., Verdin E., Webb Y., Breslow R., Rifkind R. A., Marks P. A. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3003–3007. doi: 10.1073/pnas.95.6.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sherr C. J. Cancer cell cycles. Science. 1996 Dec 6;274(5293):1672–1677. doi: 10.1126/science.274.5293.1672. [DOI] [PubMed] [Google Scholar]
  30. Soule H. D., Maloney T. M., Wolman S. R., Peterson W. D., Jr, Brenz R., McGrath C. M., Russo J., Pauley R. J., Jones R. F., Brooks S. C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990 Sep 15;50(18):6075–6086. [PubMed] [Google Scholar]
  31. Sowa Y., Orita T., Minamikawa S., Nakano K., Mizuno T., Nomura H., Sakai T. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun. 1997 Dec 8;241(1):142–150. doi: 10.1006/bbrc.1997.7786. [DOI] [PubMed] [Google Scholar]
  32. Stewart Z. A., Leach S. D., Pietenpol J. A. p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol. 1999 Jan;19(1):205–215. doi: 10.1128/mcb.19.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ueda H., Manda T., Matsumoto S., Mukumoto S., Nishigaki F., Kawamura I., Shimomura K. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J Antibiot (Tokyo) 1994 Mar;47(3):315–323. doi: 10.7164/antibiotics.47.315. [DOI] [PubMed] [Google Scholar]
  34. Ueda H., Nakajima H., Hori Y., Fujita T., Nishimura M., Goto T., Okuhara M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot (Tokyo) 1994 Mar;47(3):301–310. doi: 10.7164/antibiotics.47.301. [DOI] [PubMed] [Google Scholar]
  35. Ueda H., Nakajima H., Hori Y., Goto T., Okuhara M. Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci Biotechnol Biochem. 1994 Sep;58(9):1579–1583. doi: 10.1271/bbb.58.1579. [DOI] [PubMed] [Google Scholar]
  36. Vaziri C., Stice L., Faller D. V. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 1998 Jun;9(6):465–474. [PubMed] [Google Scholar]
  37. Waldman T., Kinzler K. W., Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995 Nov 15;55(22):5187–5190. [PubMed] [Google Scholar]
  38. Wang R., Brunner T., Zhang L., Shi Y. Fungal metabolite FR901228 inhibits c-Myc and Fas ligand expression. Oncogene. 1998 Sep 24;17(12):1503–1508. doi: 10.1038/sj.onc.1202059. [DOI] [PubMed] [Google Scholar]
  39. Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323–330. doi: 10.1016/0092-8674(95)90385-2. [DOI] [PubMed] [Google Scholar]
  40. Wosikowski K., Regis J. T., Robey R. W., Alvarez M., Buters J. T., Gudas J. M., Bates S. E. Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Differ. 1995 Nov;6(11):1395–1403. [PubMed] [Google Scholar]
  41. Zhang H. S., Gavin M., Dahiya A., Postigo A. A., Ma D., Luo R. X., Harbour J. W., Dean D. C. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 2000 Mar 31;101(1):79–89. doi: 10.1016/S0092-8674(00)80625-X. [DOI] [PubMed] [Google Scholar]
  42. Zhang H. S., Postigo A. A., Dean D. C. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell. 1999 Apr 2;97(1):53–61. doi: 10.1016/s0092-8674(00)80714-x. [DOI] [PubMed] [Google Scholar]
  43. Zou X., Rudchenko S., Wong K., Calame K. Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes Dev. 1997 Mar 1;11(5):654–662. doi: 10.1101/gad.11.5.654. [DOI] [PubMed] [Google Scholar]
  44. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES