Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Oct;83(8):1077–1083. doi: 10.1054/bjoc.2000.1439

Inhibition of angiogenesis and tumour growth by VEGF121–toxin conjugate: differential effect on proliferating endothelial cells

R Wild 1, M Dhanabal 2, T A Olson 3, S Ramakrishnan 4
PMCID: PMC2363558  PMID: 10993657

Abstract

Vascular endothelial growth factor (VEGF) plays an important role in tumour angiogenesis. VEGF binds to tyrosine kinase receptors, which are expressed almost exclusively on tumour endothelium. Therefore, VEGF can be used to target toxin molecules to tumour vessels for anti-angiogenic therapy. However, recent evidence suggests that VEGF can also bind in an isoform-specific fashion to a newly identified neuropilin-1 (NP-1) receptor. NP-1 is widely expressed in normal tissue and presents a potential target for unwanted toxicity. As a consequence, we investigated whether the VEGF121 isoform, which lacks the NP-1 binding domain, could be used to target toxin polypeptides to tumour vasculature. Treatment of endothelial cells with a VEGF121–diphtheria toxin (DT385) conjugate selectively inhibited proliferating endothelial cells, whereas confluent cultures were completely resistant to the construct. In addition, VEGF121–DT385 conjugate treatment completely prevented tumour cell induced angiogenesis in vivo. Most importantly, the conjugate inhibited tumour growth in athymic mice and induced tumour-specific vascular damage. There was also no apparent toxicity associated with the treatment. Our results suggest that proliferating endothelial cells are highly sensitive to VEGF121–toxin conjugates and that the binding to NP-1 receptors is not necessary for efficient inhibition of tumour growth. © 2000 Cancer Research Campaign

Keywords: angiogenesis, VEGF, vascular endothelial growth factor, KDR/flk-1, neuropilin-1, diphtheria toxin

Full Text

The Full Text of this article is available as a PDF (256.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora N., Masood R., Zheng T., Cai J., Smith D. L., Gill P. S. Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res. 1999 Jan 1;59(1):183–188. [PubMed] [Google Scholar]
  2. Baillie C. T., Winslet M. C., Bradley N. J. Tumour vasculature--a potential therapeutic target. Br J Cancer. 1995 Aug;72(2):257–267. doi: 10.1038/bjc.1995.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burrows F. J., Derbyshire E. J., Tazzari P. L., Amlot P., Gazdar A. F., King S. W., Letarte M., Vitetta E. S., Thorpe P. E. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res. 1995 Dec;1(12):1623–1634. [PubMed] [Google Scholar]
  4. Burrows F. J., Thorpe P. E. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8996–9000. doi: 10.1073/pnas.90.19.8996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer. 1982 Jan;45(1):136–139. doi: 10.1038/bjc.1982.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feng D., Nagy J. A., Brekken R. A., Pettersson A., Manseau E. J., Pyne K., Mulligan R., Thorpe P. E., Dvorak H. F., Dvorak A. M. Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors. J Histochem Cytochem. 2000 Apr;48(4):545–556. doi: 10.1177/002215540004800412. [DOI] [PubMed] [Google Scholar]
  7. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992 Apr;3(2):65–71. [PubMed] [Google Scholar]
  8. Fulcher S., Lui G. M., Houston L. L., Ramakrishnan S., Burris T., Polansky J., Alvarado J. Use of immunotoxin to inhibit proliferating human corneal endothelium. Invest Ophthalmol Vis Sci. 1988 May;29(5):755–759. [PubMed] [Google Scholar]
  9. Gho Y. S., Lee J. E., Oh K. S., Bae D. G., Chae C. B. Development of antiangiogenin peptide using a phage-displayed peptide library. Cancer Res. 1997 Sep 1;57(17):3733–3740. [PubMed] [Google Scholar]
  10. Gitay-Goren H., Cohen T., Tessler S., Soker S., Gengrinovitch S., Rockwell P., Klagsbrun M., Levi B. Z., Neufeld G. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem. 1996 Mar 8;271(10):5519–5523. doi: 10.1074/jbc.271.10.5519. [DOI] [PubMed] [Google Scholar]
  11. Holash J., Maisonpierre P. C., Compton D., Boland P., Alexander C. R., Zagzag D., Yancopoulos G. D., Wiegand S. J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999 Jun 18;284(5422):1994–1998. doi: 10.1126/science.284.5422.1994. [DOI] [PubMed] [Google Scholar]
  12. Iruela-Arispe M. L., Dvorak H. F. Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost. 1997 Jul;78(1):672–677. [PubMed] [Google Scholar]
  13. Jain R. K. Delivery of molecular and cellular medicine to solid tumors. J Control Release. 1998 Apr 30;53(1-3):49–67. doi: 10.1016/s0168-3659(97)00237-x. [DOI] [PubMed] [Google Scholar]
  14. Lappi D. A. Tumor targeting through fibroblast growth factor receptors. Semin Cancer Biol. 1995 Oct;6(5):279–288. doi: 10.1006/scbi.1995.0036. [DOI] [PubMed] [Google Scholar]
  15. Mohanraj D., Olson T., Ramakrishnan S. A novel method to purify recombinant vascular endothelial growth factor (VEGF121) expressed in yeast. Biochem Biophys Res Commun. 1995 Oct 13;215(2):750–756. doi: 10.1006/bbrc.1995.2527. [DOI] [PubMed] [Google Scholar]
  16. Mohanraj D., Wahlsten J. L., Ramakrishnan S. Expression and radiolabeling of recombinant proteins containing a phosphorylation motif. Protein Expr Purif. 1996 Sep;8(2):175–182. doi: 10.1006/prep.1996.0090. [DOI] [PubMed] [Google Scholar]
  17. Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999 Jan;13(1):9–22. [PubMed] [Google Scholar]
  18. Olson T. A., Mohanraj D., Roy S., Ramakrishnan S. Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer. 1997 Dec 10;73(6):865–870. doi: 10.1002/(sici)1097-0215(19971210)73:6<865::aid-ijc17>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  19. Plate K. H., Breier G., Millauer B., Ullrich A., Risau W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res. 1993 Dec 1;53(23):5822–5827. [PubMed] [Google Scholar]
  20. Plate K. H., Risau W. Angiogenesis in malignant gliomas. Glia. 1995 Nov;15(3):339–347. doi: 10.1002/glia.440150313. [DOI] [PubMed] [Google Scholar]
  21. Ramakrishnan S., Fryxell D., Mohanraj D., Olson M., Li B. Y. Cytotoxic conjugates containing translational inhibitory proteins. Annu Rev Pharmacol Toxicol. 1992;32:579–621. doi: 10.1146/annurev.pa.32.040192.003051. [DOI] [PubMed] [Google Scholar]
  22. Ramakrishnan S., Olson T. A., Bautch V. L., Mohanraj D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res. 1996 Mar 15;56(6):1324–1330. [PubMed] [Google Scholar]
  23. Seon B. K., Matsuno F., Haruta Y., Kondo M., Barcos M. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res. 1997 Jul;3(7):1031–1044. [PubMed] [Google Scholar]
  24. Soker S., Fidder H., Neufeld G., Klagsbrun M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem. 1996 Mar 8;271(10):5761–5767. doi: 10.1074/jbc.271.10.5761. [DOI] [PubMed] [Google Scholar]
  25. Soker S., Gollamudi-Payne S., Fidder H., Charmahelli H., Klagsbrun M. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem. 1997 Dec 12;272(50):31582–31588. doi: 10.1074/jbc.272.50.31582. [DOI] [PubMed] [Google Scholar]
  26. Soker S., Takashima S., Miao H. Q., Neufeld G., Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998 Mar 20;92(6):735–745. doi: 10.1016/s0092-8674(00)81402-6. [DOI] [PubMed] [Google Scholar]
  27. Veikkola T., Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999 Jun;9(3):211–220. doi: 10.1006/scbi.1998.0091. [DOI] [PubMed] [Google Scholar]
  28. Wild R., Ramakrishnan S., Sedgewick J., Griffioen A. W. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc Res. 2000 May;59(3):368–376. doi: 10.1006/mvre.1999.2233. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES