Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Oct;83(8):1084–1095. doi: 10.1054/bjoc.2000.1409

Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

H M Warenius 1, M Jones 1, T Gorman 1, R McLeish 1, L Seabra 1, R Barraclough 2, P Rudland 2
PMCID: PMC2363568  PMID: 10993658

Abstract

The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign

Keywords: RAF1, p53, radiosensitivity, exit from G2/M

Full Text

The Full Text of this article is available as a PDF (626.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni-Grinstein R., Schwartz D., Rotter V. Accumulation of wild-type p53 protein upon gamma-irradiation induces a G2 arrest-dependent immunoglobulin kappa light chain gene expression. EMBO J. 1995 Apr 3;14(7):1392–1401. doi: 10.1002/j.1460-2075.1995.tb07125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barraclough R., Kimbell R., Rudland P. S. Differential control of mRNA levels for Thy-1 antigen and laminin in rat mammary epithelial and myoepithelial-like cells. J Cell Physiol. 1987 Jun;131(3):393–401. doi: 10.1002/jcp.1041310311. [DOI] [PubMed] [Google Scholar]
  3. Bischoff J. R., Casso D., Beach D. Human p53 inhibits growth in Schizosaccharomyces pombe. Mol Cell Biol. 1992 Apr;12(4):1405–1411. doi: 10.1128/mcb.12.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blagosklonny M. V., Schulte T. W., Nguyen P., Mimnaugh E. G., Trepel J., Neckers L. Taxol induction of p21WAF1 and p53 requires c-raf-1. Cancer Res. 1995 Oct 15;55(20):4623–4626. [PubMed] [Google Scholar]
  5. Bristow R. G., Benchimol S., Hill R. P. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol. 1996 Sep;40(3):197–223. doi: 10.1016/0167-8140(96)01806-3. [DOI] [PubMed] [Google Scholar]
  6. Bristow R. G., Jang A., Peacock J., Chung S., Benchimol S., Hill R. P. Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16-E7 and/or activated H-ras. Oncogene. 1994 Jun;9(6):1527–1536. [PubMed] [Google Scholar]
  7. Carbone D., Chiba I., Mitsudomi T. Polymorphism at codon 213 within the p53 gene. Oncogene. 1991 Sep;6(9):1691–1692. [PubMed] [Google Scholar]
  8. Caron de Fromentel C., Soussi T. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer. 1992 Jan;4(1):1–15. doi: 10.1002/gcc.2870040102. [DOI] [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Deacon J., Peckham M. J., Steel G. G. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol. 1984 Dec;2(4):317–323. doi: 10.1016/s0167-8140(84)80074-2. [DOI] [PubMed] [Google Scholar]
  11. Fan S., el-Deiry W. S., Bae I., Freeman J., Jondle D., Bhatia K., Fornace A. J., Jr, Magrath I., Kohn K. W., O'Connor P. M. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res. 1994 Nov 15;54(22):5824–5830. [PubMed] [Google Scholar]
  12. Fertil B., Malaise E. P. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys. 1981 May;7(5):621–629. doi: 10.1016/0360-3016(81)90377-1. [DOI] [PubMed] [Google Scholar]
  13. FitzGerald T. J., Henault S., Sakakeeny M., Santucci M. A., Pierce J. H., Anklesaria P., Kase K., Das I., Greenberger J. S. Expression of transfected recombinant oncogenes increases radiation resistance of clonal hematopoietic and fibroblast cell lines selectively at clinical low dose rate. Radiat Res. 1990 Apr;122(1):44–52. [PubMed] [Google Scholar]
  14. Guillouf C., Rosselli F., Krishnaraju K., Moustacchi E., Hoffman B., Liebermann D. A. p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene. 1995 Jun 1;10(11):2263–2270. [PubMed] [Google Scholar]
  15. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  16. Iliakis G., Metzger L., Muschel R. J., McKenna W. G. Induction and repair of DNA double strand breaks in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res. 1990 Oct 15;50(20):6575–6579. [PubMed] [Google Scholar]
  17. Jamal S., Ziff E. B. Raf phosphorylates p53 in vitro and potentiates p53-dependent transcriptional transactivation in vivo. Oncogene. 1995 Jun 1;10(11):2095–2101. [PubMed] [Google Scholar]
  18. Kasid U., Pfeifer A., Brennan T., Beckett M., Weichselbaum R. R., Dritschilo A., Mark G. E. Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science. 1989 Mar 10;243(4896):1354–1356. doi: 10.1126/science.2466340. [DOI] [PubMed] [Google Scholar]
  19. Kasid U., Pfeifer A., Weichselbaum R. R., Dritschilo A., Mark G. E. The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science. 1987 Aug 28;237(4818):1039–1041. doi: 10.1126/science.3616625. [DOI] [PubMed] [Google Scholar]
  20. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  21. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  22. Kawashima K., Mihara K., Usuki H., Shimizu N., Namba M. Transfected mutant p53 gene increases X-ray-induced cell killing and mutation in human fibroblasts immortalized with 4-nitroquinoline 1-oxide but does not induce neoplastic transformation of the cells. Int J Cancer. 1995 Mar 29;61(1):76–79. doi: 10.1002/ijc.2910610113. [DOI] [PubMed] [Google Scholar]
  23. Kelland L. R., Edwards S. M., Steel G. G. Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat Res. 1988 Dec;116(3):526–538. [PubMed] [Google Scholar]
  24. Khanna K. K., Lavin M. F. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene. 1993 Dec;8(12):3307–3312. [PubMed] [Google Scholar]
  25. Lee J. M., Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5742–5746. doi: 10.1073/pnas.90.12.5742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lees-Miller S. P., Sakaguchi K., Ullrich S. J., Appella E., Anderson C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol. 1992 Nov;12(11):5041–5049. doi: 10.1128/mcb.12.11.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lovrić J., Moelling K. Activation of Mil/Raf protein kinases in mitotic cells. Oncogene. 1996 Mar 7;12(5):1109–1116. [PubMed] [Google Scholar]
  28. Mazars G. R., Jeanteur P., Lynch H. T., Lenoir G., Theillet C. Nucleotide sequence polymorphism in a hotspot mutation region of the p53 gene. Oncogene. 1992 Apr;7(4):781–782. [PubMed] [Google Scholar]
  29. McIlwrath A. J., Vasey P. A., Ross G. M., Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res. 1994 Jul 15;54(14):3718–3722. [PubMed] [Google Scholar]
  30. McIntyre J. F., Smith-Sorensen B., Friend S. H., Kassell J., Borresen A. L., Yan Y. X., Russo C., Sato J., Barbier N., Miser J. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol. 1994 May;12(5):925–930. doi: 10.1200/JCO.1994.12.5.925. [DOI] [PubMed] [Google Scholar]
  31. McKenna W. G., Iliakis G., Weiss M. C., Bernhard E. J., Muschel R. J. Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res. 1991 Mar;125(3):283–287. [PubMed] [Google Scholar]
  32. McKenna W. G., Weiss M. C., Endlich B., Ling C. C., Bakanauskas V. J., Kelsten M. L., Muschel R. J. Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Res. 1990 Jan 1;50(1):97–102. [PubMed] [Google Scholar]
  33. Midgley C. A., Lane D. P. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene. 1997 Sep 4;15(10):1179–1189. doi: 10.1038/sj.onc.1201459. [DOI] [PubMed] [Google Scholar]
  34. Milne D. M., Campbell D. G., Caudwell F. B., Meek D. W. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J Biol Chem. 1994 Mar 25;269(12):9253–9260. [PubMed] [Google Scholar]
  35. Milne D. M., Palmer R. H., Meek D. W. Mutation of the casein kinase II phosphorylation site abolishes the anti-proliferative activity of p53. Nucleic Acids Res. 1992 Nov 11;20(21):5565–5570. doi: 10.1093/nar/20.21.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Núez M. I., Villalobos M., Olea N., Valenzuela M. T., Pedraza V., McMillan T. J., Ruiz de Almodóvar J. M. Radiation-induced DNA double-strand break rejoining in human tumour cells. Br J Cancer. 1995 Feb;71(2):311–316. doi: 10.1038/bjc.1995.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pardo F. S., Su M., Borek C., Preffer F., Dombkowski D., Gerweck L., Schmidt E. V. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiat Res. 1994 Nov;140(2):180–185. [PubMed] [Google Scholar]
  38. Paules R. S., Levedakou E. N., Wilson S. J., Innes C. L., Rhodes N., Tlsty T. D., Galloway D. A., Donehower L. A., Tainsky M. A., Kaufmann W. K. Defective G2 checkpoint function in cells from individuals with familial cancer syndromes. Cancer Res. 1995 Apr 15;55(8):1763–1773. [PubMed] [Google Scholar]
  39. Pirollo K. F., Garner R., Yuan S. Y., Li L., Blattner W. A., Chang E. H. raf involvement in the simultaneous genetic transfer of the radioresistant and transforming phenotypes. Int J Radiat Biol. 1989 May;55(5):783–796. doi: 10.1080/09553008914550831. [DOI] [PubMed] [Google Scholar]
  40. Pirollo K. F., Tong Y. A., Villegas Z., Chen Y., Chang E. H. Oncogene- transformed NIH 3T3 cells display radiation resistance levels indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiat Res. 1993 Aug;135(2):234–243. [PubMed] [Google Scholar]
  41. Powell S. N., McMillan T. J. The repair fidelity of restriction enzyme-induced double strand breaks in plasmid DNA correlates with radioresistance in human tumor cell lines. Int J Radiat Oncol Biol Phys. 1994 Jul 30;29(5):1035–1040. doi: 10.1016/0360-3016(94)90399-9. [DOI] [PubMed] [Google Scholar]
  42. Radford I. R. p53 status, DNA double-strand break repair proficiency, and radiation response of mouse lymphoid and myeloid cell lines. Int J Radiat Biol. 1994 Nov;66(5):557–560. doi: 10.1080/09553009414551621. [DOI] [PubMed] [Google Scholar]
  43. Rodrigues N. R., Rowan A., Smith M. E., Kerr I. B., Bodmer W. F., Gannon J. V., Lane D. P. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7555–7559. doi: 10.1073/pnas.87.19.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rosselli F., Ridet A., Soussi T., Duchaud E., Alapetite C., Moustacchi E. p53-dependent pathway of radio-induced apoptosis is altered in Fanconi anemia. Oncogene. 1995 Jan 5;10(1):9–17. [PubMed] [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schwartz D., Almog N., Peled A., Goldfinger N., Rotter V. Role of wild type p53 in the G2 phase: regulation of the gamma-irradiation-induced delay and DNA repair. Oncogene. 1997 Nov 20;15(21):2597–2607. doi: 10.1038/sj.onc.1201436. [DOI] [PubMed] [Google Scholar]
  47. Schwartz J. L., Mustafi R., Beckett M. A., Czyzewski E. A., Farhangi E., Grdina D. J., Rotmensch J., Weichselbaum R. R. Radiation-induced DNA double-strand break frequencies in human squamous cell carcinoma cell lines of different radiation sensitivities. Int J Radiat Biol. 1991 Jun;59(6):1341–1352. doi: 10.1080/09553009114551211. [DOI] [PubMed] [Google Scholar]
  48. Segawa K., Hokuto I., Minowa A., Ohyama K., Takano T. Cyclin E enhances P53-mediated transactivation. FEBS Lett. 1993 Aug 30;329(3):283–286. doi: 10.1016/0014-5793(93)80238-p. [DOI] [PubMed] [Google Scholar]
  49. Shimm D. S., Miller P. R., Lin T., Moulinier P. P., Hill A. B. Effects of v-src oncogene activation on radiation sensitivity in drug-sensitive and in multidrug-resistant rat fibroblasts. Radiat Res. 1992 Feb;129(2):149–156. [PubMed] [Google Scholar]
  50. Siles E., Villalobos M., Valenzuela M. T., Núez M. I., Gordon A., McMillan T. J., Pedraza V., Ruiz de Almodóvar J. M. Relationship between p53 status and radiosensitivity in human tumour cell lines. Br J Cancer. 1996 Mar;73(5):581–588. doi: 10.1038/bjc.1996.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stewart N., Hicks G. G., Paraskevas F., Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene. 1995 Jan 5;10(1):109–115. [PubMed] [Google Scholar]
  52. Storey A., Thomas M., Kalita A., Harwood C., Gardiol D., Mantovani F., Breuer J., Leigh I. M., Matlashewski G., Banks L. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998 May 21;393(6682):229–234. doi: 10.1038/30400. [DOI] [PubMed] [Google Scholar]
  53. Su L. N., Little J. B. Prolonged cell cycle delay in radioresistant human cell lines transfected with activated ras oncogene and/or simian virus 40 T-antigen. Radiat Res. 1993 Jan;133(1):73–79. [PubMed] [Google Scholar]
  54. Suzuki K., Watanabe M., Miyoshi J. Differences in effects of oncogenes on resistance of gamma rays, ultraviolet light, and heat shock. Radiat Res. 1992 Feb;129(2):157–162. [PubMed] [Google Scholar]
  55. Tada M., Matsumoto R., Iggo R. D., Onimaru R., Shirato H., Sawamura Y., Shinohe Y. Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res. 1998 May 1;58(9):1793–1797. [PubMed] [Google Scholar]
  56. Takahashi T., Takahashi T., Suzuki H., Hida T., Sekido Y., Ariyoshi Y., Ueda R. The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern. Oncogene. 1991 Oct;6(10):1775–1778. [PubMed] [Google Scholar]
  57. Warenius H. M., Browning P. G., Britten R. A., Peacock J. A., Rapp U. R. C-raf-1 proto-oncogene expression relates to radiosensitivity rather than radioresistance. Eur J Cancer. 1994;30A(3):369–375. doi: 10.1016/0959-8049(94)90258-5. [DOI] [PubMed] [Google Scholar]
  58. Warenius H. M., Jones M. D., Thompson C. C. Exit from G2 phase after 2 Gy gamma irradiation is faster in radiosensitive human cells with high expression of the RAF1 proto-oncogene. Radiat Res. 1996 Nov;146(5):485–493. [PubMed] [Google Scholar]
  59. Whitaker S. J., Ung Y. C., McMillan T. J. DNA double-strand break induction and rejoining as determinants of human tumour cell radiosensitivity. A pulsed-field gel electrophoresis study. Int J Radiat Biol. 1995 Jan;67(1):7–18. doi: 10.1080/09553009514550021. [DOI] [PubMed] [Google Scholar]
  60. Xia F., Wang X., Wang Y. H., Tsang N. M., Yandell D. W., Kelsey K. T., Liber H. L. Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res. 1995 Jan 1;55(1):12–15. [PubMed] [Google Scholar]
  61. Zhen W., Denault C. M., Loviscek K., Walter S., Geng L., Vaughan A. T. The relative radiosensitivity of TK6 and WI-L2-NS lymphoblastoid cells derived from a common source is primarily determined by their p53 mutational status. Mutat Res. 1995 Feb;346(2):85–92. doi: 10.1016/0165-7992(95)90055-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES