Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Nov;83(9):1183–1191. doi: 10.1054/bjoc.2000.1388

Loss of growth inhibitory effects of retinoic acid in human breast cancer cells following long-term exposure to retinoic acid

R Stephen 1, P D Darbre 1
PMCID: PMC2363575  PMID: 11027432

Abstract

Although retinoids are known to be inhibitory to breast cancer cell growth, a key remaining question is whether they would remain effective if administered long-term. We describe here the long-term effects of all-trans retinoic acid on two oestrogen-dependent human breast cancer cell lines MCF7 and ZR-75-1. Although both cell lines were growth inhibited by retinoic acid in the short-term in either the absence or the presence of oestradiol, prolonged culture with 1 μM all-trans retinoic acid resulted in the cells acquiring resistance to the growth inhibitory effects of retinoic acid. Time courses showed that oestrogen deprivation of the cell lines resulted in upregulation of the basal non-oestrogen stimulated growth rate such that cells learned to grow at the same rate without as with oestradiol, but the cells remained growth inhibited by retinoic acid throughout. Addition of 1 μM all-trans retinoic acid to steroid deprivation conditions resulted in reproducible loss of growth response to both retinoic acid and oestradiol, although the time courses were separable in that loss of growth response to retinoic acid preceded that of oestradiol. Loss of growth response to retinoic acid did not involve loss of receptors, ER as measured by steroid binding assay or RARα as measured by Northern blotting. Function of the receptors was retained in terms of the ability of both oestradiol and retinoic acid to upregulate pS2 gene expression, but there was reduced ability to upregulate transiently transfected ERE- and RRE-linked reporter genes. Despite the accepted role of IGFBP3 in retinoic acid-mediated growth inhibition, progression to retinoic acid resistance occurred irrespective of level of IGFBP3, which remained high in the resistant MCF7 cells. Measurement of AP1 activity showed that the two cell lines had markedly different basal AP1 activities, but that progression to resistance was accompanied in both cases by a lost ability of retinoic acid to reduce AP1 activity. These results warn of potential resistance which could arise on long-term treatment with retinoic acid in a clinical situation and echo the problems of progression to endocrine resistance. It seems that whatever the constraints imposed on growth, these cells have a remarkable ability to escape from growth inhibition. However, the ability of retinoic acid to delay progression to oestrogen resistance is encouraging for endocrine therapy, and the concentration-dependence of retinoic acid resistance suggests that progression is not absolute but could be manipulated by dose. © 2000 Cancer Research Campaign

Keywords: retinoic acid, breast cancer cells

Full Text

The Full Text of this article is available as a PDF (348.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo M. L., Shao Z. M., Lanau F., Chen J. C., Clemmons D. R., Roberts C. T., Jr, LeRoith D., Fontana J. A. Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line. Endocrinology. 1992 Oct;131(4):1858–1866. doi: 10.1210/endo.131.4.1382963. [DOI] [PubMed] [Google Scholar]
  2. Anzano M. A., Byers S. W., Smith J. M., Peer C. W., Mullen L. T., Brown C. C., Roberts A. B., Sporn M. B. Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 1994 Sep 1;54(17):4614–4617. [PubMed] [Google Scholar]
  3. Brown A. M., Jeltsch J. M., Roberts M., Chambon P. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6344–6348. doi: 10.1073/pnas.81.20.6344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Budd G. T., Adamson P. C., Gupta M., Homayoun P., Sandstrom S. K., Murphy R. F., McLain D., Tuason L., Peereboom D., Bukowski R. M. Phase I/II trial of all-trans retinoic acid and tamoxifen in patients with advanced breast cancer. Clin Cancer Res. 1998 Mar;4(3):635–642. [PubMed] [Google Scholar]
  5. Butler W. B., Fontana J. A. Responses to retinoic acid of tamoxifen-sensitive and -resistant sublines of human breast cancer cell line MCF-7. Cancer Res. 1992 Nov 15;52(22):6164–6167. [PubMed] [Google Scholar]
  6. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996 Jul;10(9):940–954. [PubMed] [Google Scholar]
  7. Chen J. Y., Penco S., Ostrowski J., Balaguer P., Pons M., Starrett J. E., Reczek P., Chambon P., Gronemeyer H. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 1995 Mar 15;14(6):1187–1197. doi: 10.1002/j.1460-2075.1995.tb07102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costa A. Breast cancer chemoprevention. Eur J Cancer. 1993;29A(4):589–592. doi: 10.1016/s0959-8049(05)80158-3. [DOI] [PubMed] [Google Scholar]
  9. Daly R. J., Darbre P. D. Cellular and molecular events in loss of estrogen sensitivity in ZR-75-1 and T-47-D human breast cancer cells. Cancer Res. 1990 Sep 15;50(18):5868–5875. [PubMed] [Google Scholar]
  10. Daly R. J., King R. J., Darbre P. D. Interaction of growth factors during progression towards steroid independence in T-47-D human breast cancer cells. J Cell Biochem. 1990 Jul;43(3):199–211. doi: 10.1002/jcb.240430302. [DOI] [PubMed] [Google Scholar]
  11. Darbre P., Yates J., Curtis S., King R. J. Effect of estradiol on human breast cancer cells in culture. Cancer Res. 1983 Jan;43(1):349–354. [PubMed] [Google Scholar]
  12. Daschner P. J., Ciolino H. P., Plouzek C. A., Yeh G. C. Increased AP-1 activity in drug resistant human breast cancer MCF-7 cells. Breast Cancer Res Treat. 1999 Feb;53(3):229–240. doi: 10.1023/a:1006138803392. [DOI] [PubMed] [Google Scholar]
  13. Dawson M. I., Chao W. R., Pine P., Jong L., Hobbs P. D., Rudd C. K., Quick T. C., Niles R. M., Zhang X. K., Lombardo A. Correlation of retinoid binding affinity to retinoic acid receptor alpha with retinoid inhibition of growth of estrogen receptor-positive MCF-7 mammary carcinoma cells. Cancer Res. 1995 Oct 1;55(19):4446–4451. [PubMed] [Google Scholar]
  14. Demirpence E., Balaguer P., Trousse F., Nicolas J. C., Pons M., Gagne D. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res. 1994 Mar 15;54(6):1458–1464. [PubMed] [Google Scholar]
  15. DiSepio D., Sutter M., Johnson A. T., Chandraratna R. A., Nagpal S. Identification of the AP1-antagonism domain of retinoic acid receptors. Mol Cell Biol Res Commun. 1999 Apr;1(1):7–13. doi: 10.1006/mcbr.1999.0101. [DOI] [PubMed] [Google Scholar]
  16. Engel L. W., Young N. A., Tralka T. S., Lippman M. E., O'Brien S. J., Joyce M. J. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 1978 Oct;38(10):3352–3364. [PubMed] [Google Scholar]
  17. Fontana J. A., Burrows-Mezu A., Clemmons D. R., LeRoith D. Retinoid modulation of insulin-like growth factor-binding proteins and inhibition of breast carcinoma proliferation. Endocrinology. 1991 Feb;128(2):1115–1122. doi: 10.1210/endo-128-2-1115. [DOI] [PubMed] [Google Scholar]
  18. Fontana J. A. Interaction of retinoids and tamoxifen on the inhibition of human mammary carcinoma cell proliferation. Exp Cell Biol. 1987;55(3):136–144. doi: 10.1159/000163409. [DOI] [PubMed] [Google Scholar]
  19. Fontana J. A., Mezu A. B., Cooper B. N., Miranda D. Retinoid modulation of estradiol-stimulated growth and of protein synthesis and secretion in human breast carcinoma cells. Cancer Res. 1990 Apr 1;50(7):1997–2002. [PubMed] [Google Scholar]
  20. Fontana J. A., Nervi C., Shao Z. M., Jetten A. M. Retinoid antagonism of estrogen-responsive transforming growth factor alpha and pS2 gene expression in breast carcinoma cells. Cancer Res. 1992 Jul 15;52(14):3938–3945. [PubMed] [Google Scholar]
  21. Grubbs C. J., Moon R. C., Sporn M. B., Newton D. L. Inhibition of mammary cancer by retinyl methyl ether. Cancer Res. 1977 Feb;37(2):599–602. [PubMed] [Google Scholar]
  22. Göttlicher M., Heck S., Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med (Berl) 1998 Jun;76(7):480–489. doi: 10.1007/s001090050242. [DOI] [PubMed] [Google Scholar]
  23. Hossenlopp P., Seurin D., Segovia-Quinson B., Hardouin S., Binoux M. Analysis of serum insulin-like growth factor binding proteins using western blotting: use of the method for titration of the binding proteins and competitive binding studies. Anal Biochem. 1986 Apr;154(1):138–143. doi: 10.1016/0003-2697(86)90507-5. [DOI] [PubMed] [Google Scholar]
  24. Jeng M. H., Shupnik M. A., Bender T. P., Westin E. H., Bandyopadhyay D., Kumar R., Masamura S., Santen R. J. Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology. 1998 Oct;139(10):4164–4174. doi: 10.1210/endo.139.10.6229. [DOI] [PubMed] [Google Scholar]
  25. Kazmi S. M., Plante R. K., Visconti V., Lau C. Y. Comparison of N-(4-hydroxyphenyl)retinamide and all-trans-retinoic acid in the regulation of retinoid receptor-mediated gene expression in human breast cancer cell lines. Cancer Res. 1996 Mar 1;56(5):1056–1062. [PubMed] [Google Scholar]
  26. Kizaki M., Fukuchi Y., Ikeda Y. A novel retinoic acid-resistant acute promyelocytic leukemia model in vitro and in vivo (review). Int J Mol Med. 1999 Oct;4(4):359–364. doi: 10.3892/ijmm.4.4.359. [DOI] [PubMed] [Google Scholar]
  27. Koga M., Sutherland R. L. Retinoic acid acts synergistically with 1,25-dihydroxyvitamin D3 or antioestrogen to inhibit T-47D human breast cancer cell proliferation. J Steroid Biochem Mol Biol. 1991 Oct;39(4A):455–460. doi: 10.1016/0960-0760(91)90238-z. [DOI] [PubMed] [Google Scholar]
  28. Lacroix A., L'Heureux N., Bhat P. V. Cytoplasmic retinoic acid-binding protein in retinoic acid-resistant human breast cancer sublines. J Natl Cancer Inst. 1984 Oct;73(4):793–800. [PubMed] [Google Scholar]
  29. Lacroix A., Lippman M. E. Binding of retinoids to human breast cancer cell lines and their effects on cell growth. J Clin Invest. 1980 Mar;65(3):586–591. doi: 10.1172/JCI109703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lamph W. W., Wamsley P., Sassone-Corsi P., Verma I. M. Induction of proto-oncogene JUN/AP-1 by serum and TPA. Nature. 1988 Aug 18;334(6183):629–631. doi: 10.1038/334629a0. [DOI] [PubMed] [Google Scholar]
  31. Larsen S. S., Madsen M. W., Jensen B. L., Lykkesfeldt A. E. Resistance of human breast-cancer cells to the pure steroidal anti-estrogen ICI 182,780 is not associated with a general loss of estrogen-receptor expression or lack of estrogen responsiveness. Int J Cancer. 1997 Sep 17;72(6):1129–1136. doi: 10.1002/(sici)1097-0215(19970917)72:6<1129::aid-ijc31>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  32. Li X. S., Shao Z. M., Sheikh M. S., Eiseman J. L., Sentz D., Jetten A. M., Chen J. C., Dawson M. I., Aisner S., Rishi A. K. Retinoic acid nuclear receptor beta inhibits breast carcinoma anchorage independent growth. J Cell Physiol. 1995 Dec;165(3):449–458. doi: 10.1002/jcp.1041650302. [DOI] [PubMed] [Google Scholar]
  33. Lotan R. Different susceptibilities of human melanoma and breast carcinoma cell lines to retinoic acid-induced growth inhibition. Cancer Res. 1979 Mar;39(3):1014–1019. [PubMed] [Google Scholar]
  34. Marth C., Böck G., Daxenbichler G. Effect of 4-hydroxyphenylretinamide and retinoic acid on proliferation and cell cycle of cultured human breast cancer cells. J Natl Cancer Inst. 1985 Nov;75(5):871–875. doi: 10.1093/jnci/75.5.871. [DOI] [PubMed] [Google Scholar]
  35. Masiakowski P., Breathnach R., Bloch J., Gannon F., Krust A., Chambon P. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res. 1982 Dec 20;10(24):7895–7903. doi: 10.1093/nar/10.24.7895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Moon R. C., Grubbs C. J., Sporn M. B., Goodman D. G. Retinyl acetate inhibits mammary carcinogenesis induced by N-methyl-N-nitrosourea. Nature. 1977 Jun 16;267(5612):620–621. doi: 10.1038/267620a0. [DOI] [PubMed] [Google Scholar]
  37. Moon R. C., Grubbs C. J., Sporn M. B. Inhibition of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis by retinyl acetate. Cancer Res. 1976 Jul;36(7 Pt 2):2626–2630. [PubMed] [Google Scholar]
  38. Oh Y. IGF-independent regulation of breast cancer growth by IGF binding proteins. Breast Cancer Res Treat. 1998 Feb;47(3):283–293. doi: 10.1023/a:1005911319432. [DOI] [PubMed] [Google Scholar]
  39. Osborne C. K., Hobbs K., Trent J. M. Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat. 1987;9(2):111–121. doi: 10.1007/BF01807363. [DOI] [PubMed] [Google Scholar]
  40. Rettura G., Schittek A., Hardy M., Levenson S. M., Demetriou A., Seifter E. Antitumor action of vitamin A in mice inoculated with adenocarcinoma cells. J Natl Cancer Inst. 1975 Jun;54(6):1489–1491. doi: 10.1093/jnci/54.6.1489. [DOI] [PubMed] [Google Scholar]
  41. Rishi A. K., Shao Z. M., Baumann R. G., Li X. S., Sheikh M. S., Kimura S., Bashirelahi N., Fontana J. A. Estradiol regulation of the human retinoic acid receptor alpha gene in human breast carcinoma cells is mediated via an imperfect half-palindromic estrogen response element and Sp1 motifs. Cancer Res. 1995 Nov 1;55(21):4999–5006. [PubMed] [Google Scholar]
  42. Roman S. D., Clarke C. L., Hall R. E., Alexander I. E., Sutherland R. L. Expression and regulation of retinoic acid receptors in human breast cancer cells. Cancer Res. 1992 Apr 15;52(8):2236–2242. [PubMed] [Google Scholar]
  43. Roman S. D., Ormandy C. J., Manning D. L., Blamey R. W., Nicholson R. I., Sutherland R. L., Clarke C. L. Estradiol induction of retinoic acid receptors in human breast cancer cells. Cancer Res. 1993 Dec 15;53(24):5940–5945. [PubMed] [Google Scholar]
  44. Rubin M., Fenig E., Rosenauer A., Menendez-Botet C., Achkar C., Bentel J. M., Yahalom J., Mendelsohn J., Miller W. H., Jr 9-Cis retinoic acid inhibits growth of breast cancer cells and down-regulates estrogen receptor RNA and protein. Cancer Res. 1994 Dec 15;54(24):6549–6556. [PubMed] [Google Scholar]
  45. Saceda M., Lippman M. E., Chambon P., Lindsey R. L., Ponglikitmongkol M., Puente M., Martin M. B. Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol Endocrinol. 1988 Dec;2(12):1157–1162. doi: 10.1210/mend-2-12-1157. [DOI] [PubMed] [Google Scholar]
  46. Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
  47. Shang Y., Baumrucker C. R., Green M. H. Signal relay by retinoic acid receptors alpha and beta in the retinoic acid-induced expression of insulin-like growth factor-binding protein-3 in breast cancer cells. J Biol Chem. 1999 Jun 18;274(25):18005–18010. doi: 10.1074/jbc.274.25.18005. [DOI] [PubMed] [Google Scholar]
  48. Sheikh M. S., Shao Z. M., Chen J. C., Hussain A., Jetten A. M., Fontana J. A. Estrogen receptor-negative breast cancer cells transfected with the estrogen receptor exhibit increased RAR alpha gene expression and sensitivity to growth inhibition by retinoic acid. J Cell Biochem. 1993 Dec;53(4):394–404. doi: 10.1002/jcb.240530417. [DOI] [PubMed] [Google Scholar]
  49. Sheikh M. S., Shao Z. M., Li X. S., Dawson M., Jetten A. M., Wu S., Conley B. A., Garcia M., Rochefort H., Fontana J. A. Retinoid-resistant estrogen receptor-negative human breast carcinoma cells transfected with retinoic acid receptor-alpha acquire sensitivity to growth inhibition by retinoids. J Biol Chem. 1994 Aug 26;269(34):21440–21447. [PubMed] [Google Scholar]
  50. Slack J. L. Biology and treatment of acute progranulocytic leukemia. Curr Opin Hematol. 1999 Jul;6(4):236–240. doi: 10.1097/00062752-199907000-00007. [DOI] [PubMed] [Google Scholar]
  51. Sleigh M. J. A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal Biochem. 1986 Jul;156(1):251–256. doi: 10.1016/0003-2697(86)90180-6. [DOI] [PubMed] [Google Scholar]
  52. Soprano D. R., Chen L. X., Wu S., Donigan A. M., Borghaei R. C., Soprano K. J. Overexpression of both RAR and RXR restores AP-1 repression in ovarian adenocarcinoma cells resistant to retinoic acid-dependent growth inhibition. Oncogene. 1996 Feb 1;12(3):577–584. [PubMed] [Google Scholar]
  53. Ueda H., Ono M., Hagino Y., Kuwano M. Isolation of retinoic acid-resistant clones from human breast cancer cell line MCF-7 with altered activity of cellular retinoic acid-binding protein. Cancer Res. 1985 Jul;45(7):3332–3338. [PubMed] [Google Scholar]
  54. Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wakeling A. E. Are breast tumours resistant to tamoxifen also resistant to pure antioestrogens? J Steroid Biochem Mol Biol. 1993 Dec;47(1-6):107–114. doi: 10.1016/0960-0760(93)90063-3. [DOI] [PubMed] [Google Scholar]
  56. Welshons W. V., Jordan V. C. Adaptation of estrogen-dependent MCF-7 cells to low estrogen (phenol red-free) culture. Eur J Cancer Clin Oncol. 1987 Dec;23(12):1935–1939. doi: 10.1016/0277-5379(87)90062-9. [DOI] [PubMed] [Google Scholar]
  57. Wetherall N. T., Taylor C. M. The effects of retinoid treatment and antiestrogens on the growth of T47D human breast cancer cells. Eur J Cancer Clin Oncol. 1986 Jan;22(1):53–59. doi: 10.1016/0277-5379(86)90342-1. [DOI] [PubMed] [Google Scholar]
  58. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yang L., Kim H. T., Munoz-Medellin D., Reddy P., Brown P. H. Induction of retinoid resistance in breast cancer cells by overexpression of cJun. Cancer Res. 1997 Oct 15;57(20):4652–4661. [PubMed] [Google Scholar]
  60. van der Burg B., Slager-Davidov R., van der Leede B. M., de Laat S. W., van der Saag P. T. Differential regulation of AP1 activity by retinoic acid in hormone-dependent and -independent breast cancer cells. Mol Cell Endocrinol. 1995 Aug 11;112(2):143–152. doi: 10.1016/0303-7207(95)03600-c. [DOI] [PubMed] [Google Scholar]
  61. van der Burg B., van der Leede B. M., Kwakkenbos-Isbrücker L., Salverda S., de Laat S. W., van der Saag P. T. Retinoic acid resistance of estradiol-independent breast cancer cells coincides with diminished retinoic acid receptor function. Mol Cell Endocrinol. 1993 Feb;91(1-2):149–157. doi: 10.1016/0303-7207(93)90267-n. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES