Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 May;84(10):1405–1411. doi: 10.1054/bjoc.2001.1776

MDR1 causes resistance to the antitumour drug miltefosine

M Rybczynska 1, R Liu 2, P Lu 2, F J Sharom 2, E Steinfels 3, A Di Pietro 3, M Spitaler 1, H Grunicke 1, J Hofmann 1
PMCID: PMC2363649  PMID: 11355955

Abstract

Miltefosine (hexadecylphosphocholine) is used for topical treatment of breast cancers. It has been shown previously that a high percentage of breast carcinomas express MDR1 or MRP. We investigated the sensitivity of MDR1 -expressing cells to treatment with miltefosine. We show that cells overexpressing MDR1 (NCI/ADR-RES, KB-8-5, KB-C1, CCRF/VCR1000, CCRF/ADR5000) were less sensitive to miltefosine treatment when compared to the sensitive parental cell lines. HeLa cells transfected with MDR1 exhibited resistance to the compound, indicating that expression of this gene is sufficient to reduce the sensitivity to miltefosine. The resistance of MDR1 -expressing cells to miltefosine was less pronounced than that to adriamycin or vinblastine. Expression of MDR2 did not correlate with the resistance to miltefosine. As shown by a fluorescence quenching assay using MIANS-labelled P-glycoprotein (PGP), miltefosine bound to PGP with a K d of approximately 7 μM and inhibited PGP-ATPase activity with an IC 50 of approximately 35 μM. Verapamil was not able to reverse the resistance to miltefosine. Concentrations of miltefosine up to approximately 60 μM stimulated, whereas higher concentrations inhibited the transport of [3H]-colchicine with an IC 50 of approximately 297 μM. Binding studies indicated that miltefosine seems to interact with the transmembrane domain and not the cytosolic nucleotide-binding domain of PGP. These data indicate that expression of MDR1 may reduce the response to miltefosine in patients and that this compound interacts with PGP in a manner different from a number of other substrates. © 2001 Cancer Research Campaign www.bjcancer.com

Keywords: miltefosine, hexadecylphosphocholine, multidrug resistance;MDR1

Full Text

The Full Text of this article is available as a PDF (210.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abulrob A. G., Gumbleton M. Transport of phosphatidylcholine in MDR3-negative epithelial cell lines via drug-induced MDR1 P-glycoprotein. Biochem Biophys Res Commun. 1999 Aug 19;262(1):121–126. doi: 10.1006/bbrc.1999.1120. [DOI] [PubMed] [Google Scholar]
  2. Akiyama S., Fojo A., Hanover J. A., Pastan I., Gottesman M. M. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somat Cell Mol Genet. 1985 Mar;11(2):117–126. doi: 10.1007/BF01534700. [DOI] [PubMed] [Google Scholar]
  3. Berdel W. E. Membrane-interactive lipids as experimental anticancer drugs. Br J Cancer. 1991 Aug;64(2):208–211. doi: 10.1038/bjc.1991.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brachwitz H., Vollgraf C. Analogs of alkyllysophospholipids: chemistry, effects on the molecular level and their consequences for normal and malignant cells. Pharmacol Ther. 1995 Apr;66(1):39–82. doi: 10.1016/0163-7258(95)00001-w. [DOI] [PubMed] [Google Scholar]
  5. Cardarelli C. O., Aksentijevich I., Pastan I., Gottesman M. M. Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res. 1995 Mar 1;55(5):1086–1091. [PubMed] [Google Scholar]
  6. Choi K. H., Chen C. J., Kriegler M., Roninson I. B. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell. 1988 May 20;53(4):519–529. doi: 10.1016/0092-8674(88)90568-5. [DOI] [PubMed] [Google Scholar]
  7. Conseil G., Baubichon-Cortay H., Dayan G., Jault J. M., Barron D., Di Pietro A. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9831–9836. doi: 10.1073/pnas.95.17.9831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doige C. A., Sharom F. J. Transport properties of P-glycoprotein in plasma membrane vesicles from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta. 1992 Aug 24;1109(2):161–171. doi: 10.1016/0005-2736(92)90079-2. [DOI] [PubMed] [Google Scholar]
  9. Doige C. A., Yu X., Sharom F. J. ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta. 1992 Aug 24;1109(2):149–160. doi: 10.1016/0005-2736(92)90078-z. [DOI] [PubMed] [Google Scholar]
  10. Doyle L. A., Yang W., Abruzzo L. V., Krogmann T., Gao Y., Rishi A. K., Ross D. D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15665–15670. doi: 10.1073/pnas.95.26.15665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fu D., Shi Z., Wang Y. Bcl-2 plays a key role instead of mdr1 in the resistance to hexadecylphosphocholine in human epidermoid tumor cell line KB. Cancer Lett. 1999 Aug 3;142(2):147–153. doi: 10.1016/s0304-3835(99)00146-9. [DOI] [PubMed] [Google Scholar]
  12. Goldie J. H., Coldman A. J. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res. 1984 Sep;44(9):3643–3653. [PubMed] [Google Scholar]
  13. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  14. Hilgard P., Klenner T., Stekar J., Unger C. Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol. 1993;32(2):90–95. doi: 10.1007/BF00685608. [DOI] [PubMed] [Google Scholar]
  15. Himmelmann A. W., Danhauser-Riedl S., Steinhauser G., Busch R., Modest E. J., Noseda A., Rastetter J., Vogler W. R., Berdel W. E. Cross-resistance pattern of cell lines selected for resistance towards different cytotoxic drugs to membrane-toxic phospholipids in vitro. Cancer Chemother Pharmacol. 1990;26(6):437–443. doi: 10.1007/BF02994095. [DOI] [PubMed] [Google Scholar]
  16. Hofmann J., Utz I., Spitaler M., Hofer S., Rybczynska M., Beck W. T., Herrmann D. B., Grunicke H. Resistance to the new anti-cancer phospholipid ilmofosine (BM 41 440). Br J Cancer. 1997;76(7):862–869. doi: 10.1038/bjc.1997.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kane S. E., Reinhard D. H., Fordis C. M., Pastan I., Gottesman M. M. A new vector using the human multidrug resistance gene as a selectable marker enables overexpression of foreign genes in eukaryotic cells. Gene. 1989 Dec 14;84(2):439–446. doi: 10.1016/0378-1119(89)90518-0. [DOI] [PubMed] [Google Scholar]
  18. Kimmig A., Gekeler V., Neumann M., Frese G., Handgretinger R., Kardos G., Diddens H., Niethammer D. Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res. 1990 Nov 1;50(21):6793–6799. [PubMed] [Google Scholar]
  19. Lautier D., Canitrot Y., Deeley R. G., Cole S. P. Multidrug resistance mediated by the multidrug resistance protein (MRP) gene. Biochem Pharmacol. 1996 Oct 11;52(7):967–977. doi: 10.1016/0006-2952(96)00450-9. [DOI] [PubMed] [Google Scholar]
  20. Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  21. Liu R., Sharom F. J. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry. 1996 Sep 10;35(36):11865–11873. doi: 10.1021/bi960823u. [DOI] [PubMed] [Google Scholar]
  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  23. Noonan K. E., Beck C., Holzmayer T. A., Chin J. E., Wunder J. S., Andrulis I. L., Gazdar A. F., Willman C. L., Griffith B., Von Hoff D. D. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7160–7164. doi: 10.1073/pnas.87.18.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Safa A. R., Stern R. K., Choi K., Agresti M., Tamai I., Mehta N. D., Roninson I. B. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185----Val-185 substitution in P-glycoprotein. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7225–7229. doi: 10.1073/pnas.87.18.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scheffer G. L., Wijngaard P. L., Flens M. J., Izquierdo M. A., Slovak M. L., Pinedo H. M., Meijer C. J., Clevers H. C., Scheper R. J. The drug resistance-related protein LRP is the human major vault protein. Nat Med. 1995 Jun;1(6):578–582. doi: 10.1038/nm0695-578. [DOI] [PubMed] [Google Scholar]
  26. Shapiro A. B., Fox K., Lam P., Ling V. Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur J Biochem. 1999 Feb;259(3):841–850. doi: 10.1046/j.1432-1327.1999.00098.x. [DOI] [PubMed] [Google Scholar]
  27. Shapiro A. B., Ling V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem. 1997 Nov 15;250(1):130–137. doi: 10.1111/j.1432-1033.1997.00130.x. [DOI] [PubMed] [Google Scholar]
  28. Sharom F. J., DiDiodato G., Yu X., Ashbourne K. J. Interaction of the P-glycoprotein multidrug transporter with peptides and ionophores. J Biol Chem. 1995 Apr 28;270(17):10334–10341. doi: 10.1074/jbc.270.17.10334. [DOI] [PubMed] [Google Scholar]
  29. Sharom F. J., Liu R., Romsicki Y., Lu P. Insights into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies. Biochim Biophys Acta. 1999 Dec 6;1461(2):327–345. doi: 10.1016/s0005-2736(99)00166-2. [DOI] [PubMed] [Google Scholar]
  30. Sharom F. J., Liu R., Romsicki Y. Spectroscopic and biophysical approaches for studying the structure and function of the P-glycoprotein multidrug transporter. Biochem Cell Biol. 1998;76(5):695–708. doi: 10.1139/bcb-76-5-695. [DOI] [PubMed] [Google Scholar]
  31. Sharom F. J., Lu P., Liu R., Yu X. Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation. Biochem J. 1998 Aug 1;333(Pt 3):621–630. doi: 10.1042/bj3330621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sharom F. J. The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol. 1997 Dec 1;160(3):161–175. doi: 10.1007/s002329900305. [DOI] [PubMed] [Google Scholar]
  33. Sharom F. J., Yu X., DiDiodato G., Chu J. W. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. Biochem J. 1996 Dec 1;320(Pt 2):421–428. doi: 10.1042/bj3200421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sharom F. J., Yu X., Doige C. A. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem. 1993 Nov 15;268(32):24197–24202. [PubMed] [Google Scholar]
  35. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  36. Smyth M. J., Krasovskis E., Sutton V. R., Johnstone R. W. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7024–7029. doi: 10.1073/pnas.95.12.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spitaler M., Utz I., Hilbe W., Hofmann J., Grunicke H. H. PKC-independent modulation of multidrug resistance in cells with mutant (V185) but not wild-type (G185) P-glycoprotein by bryostatin 1. Biochem Pharmacol. 1998 Oct 1;56(7):861–869. doi: 10.1016/s0006-2952(98)00107-5. [DOI] [PubMed] [Google Scholar]
  38. Thorgeirsson S. S., Silverman J. A., Gant T. W., Marino P. A. Multidrug resistance gene family and chemical carcinogens. Pharmacol Ther. 1991;49(3):283–292. doi: 10.1016/0163-7258(91)90059-u. [DOI] [PubMed] [Google Scholar]
  39. Trock B. J., Leonessa F., Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997 Jul 2;89(13):917–931. doi: 10.1093/jnci/89.13.917. [DOI] [PubMed] [Google Scholar]
  40. Vo Q. D., Gruol D. J. Identification of P-glycoprotein mutations causing a loss of steroid recognition and transport. J Biol Chem. 1999 Jul 16;274(29):20318–20327. doi: 10.1074/jbc.274.29.20318. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES