Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 May;84(10):1397–1404. doi: 10.1054/bjoc.2001.1788

Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK11195 involves de novo generation of reactive oxygen species

D A Fennell 1, M Corbo 1, A Pallaska 1, F E Cotter 1
PMCID: PMC2363650  PMID: 11355954

Abstract

Resistance to apoptosis is a major obstacle preventing effective therapy for malignancy. Mitochondria localized anti-death proteins of the Bcl-2 family play a central role in inhibiting apoptosis and therefore present valid targets for novel therapy. The peripheral benzodiazepine receptor (PBR) shares a close physical association with the permeability transition pore complex (PTPC), a pivotal regulator of cell death located at mitochondrial contact sites. In this study we investigated the cytotoxicity of the PBR ligand, PK11195, in the micromolar concentration range. PK11195 induced antioxidant inhibitable collapse of the inner mitochondrial membrane potential (ΔΨm) and mitochondrial swelling in HL60 human leukaemia cells, but not in SUDHL4 lymphoma cells (which exhibited a higher level of reduced glutathione and relative tolerance to chemotherapy or pro-oxidant induced ΔΨm dissipation). PK11195 induced the production of hydrogen peroxide that was not inhibited by Bcl-2 transfection, nor depletion of mitochondrial DNA. ROS production was however blocked by protonophore, implicating a requirement for ΔΨm. Our findings suggest that PK11195-induced cytotoxicity relies upon Bcl-2 resistant generation of oxidative stress; a process only observed at concentrations several orders of magnitude higher that required to saturate its receptor. © 2001 Cancer Research Campaign www.bjcancer.com

Keywords: mitochondrial permeability transition, PK11195, reactive oxygen species, Bcl-2, anti-oxidants

Full Text

The Full Text of this article is available as a PDF (344.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anholt R. R., Pedersen P. L., De Souza E. B., Snyder S. H. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J Biol Chem. 1986 Jan 15;261(2):576–583. [PubMed] [Google Scholar]
  2. Black K. L., Shiraishi T., Ikezak K., Tabuchi K., Becker D. P. Peripheral benzodiazepine stimulates secretion of growth hormone and mitochondrial proliferation in pituitary tumour GH3 cells. Neurol Res. 1994 Apr;16(2):74–80. doi: 10.1080/01616412.1994.11740197. [DOI] [PubMed] [Google Scholar]
  3. Braestrup C., Squires R. F. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3805–3809. doi: 10.1073/pnas.74.9.3805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camins A., Diez-Fernandez C., Camarasa J., Escubedo E. Cell surface expression of heat shock proteins in dog neutrophils induced by mitochondrial benzodiazepine receptor ligands. Immunopharmacology. 1995 Mar;29(2):159–166. doi: 10.1016/0162-3109(94)00055-k. [DOI] [PubMed] [Google Scholar]
  5. Camins A., Diez-Fernandez C., Pujadas E., Camarasa J., Escubedo E. A new aspect of the antiproliferative action of peripheral-type benzodiazepine receptor ligands. Eur J Pharmacol. 1995 Jan 16;272(2-3):289–292. doi: 10.1016/0014-2999(94)00652-n. [DOI] [PubMed] [Google Scholar]
  6. Carayon P., Portier M., Dussossoy D., Bord A., Petitprêtre G., Canat X., Le Fur G., Casellas P. Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage. Blood. 1996 Apr 15;87(8):3170–3178. [PubMed] [Google Scholar]
  7. Costantini P., Belzacq A. S., Vieira H. L., Larochette N., de Pablo M. A., Zamzami N., Susin S. A., Brenner C., Kroemer G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 2000 Jan 13;19(2):307–314. doi: 10.1038/sj.onc.1203299. [DOI] [PubMed] [Google Scholar]
  8. Costantini P., Chernyak B. V., Petronilli V., Bernardi P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem. 1996 Mar 22;271(12):6746–6751. doi: 10.1074/jbc.271.12.6746. [DOI] [PubMed] [Google Scholar]
  9. Fennell D. A., Cotter F. E. Stochastic modeling of apoptosis tolerance distributions measured by multivariate flow analysis of human leukemia cells. Cytometry. 2000 Apr 1;39(4):266–274. [PubMed] [Google Scholar]
  10. Haworth R. A., Hunter D. R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys. 1979 Jul;195(2):460–467. doi: 10.1016/0003-9861(79)90372-2. [DOI] [PubMed] [Google Scholar]
  11. Hirsch J. D., Beyer C. F., Malkowitz L., Beer B., Blume A. J. Mitochondrial benzodiazepine receptors mediate inhibition of mitochondrial respiratory control. Mol Pharmacol. 1989 Jan;35(1):157–163. [PubMed] [Google Scholar]
  12. Hirsch T., Decaudin D., Susin S. A., Marchetti P., Larochette N., Resche-Rigon M., Kroemer G. PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp Cell Res. 1998 Jun 15;241(2):426–434. doi: 10.1006/excr.1998.4084. [DOI] [PubMed] [Google Scholar]
  13. Joseph-Liauzun E., Farges R., Delmas P., Ferrara P., Loison G. The Mr 18,000 subunit of the peripheral-type benzodiazepine receptor exhibits both benzodiazepine and isoquinoline carboxamide binding sites in the absence of the voltage-dependent anion channel or of the adenine nucleotide carrier. J Biol Chem. 1997 Oct 31;272(44):28102–28106. doi: 10.1074/jbc.272.44.28102. [DOI] [PubMed] [Google Scholar]
  14. Kozikowski A. P., Kotoula M., Ma D., Boujrad N., Tückmantel W., Papadopoulos V. Synthesis and biology of a 7-nitro-2,1,3-benzoxadiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor. J Med Chem. 1997 Aug 1;40(16):2435–2439. doi: 10.1021/jm970220w. [DOI] [PubMed] [Google Scholar]
  15. Landau M., Weizman A., Zoref-Shani E., Beery E., Wasseman L., Landau O., Gavish M., Brenner S., Nordenberg J. Antiproliferative and differentiating effects of benzodiazepine receptor ligands on B16 melanoma cells. Biochem Pharmacol. 1998 Oct 15;56(8):1029–1034. doi: 10.1016/s0006-2952(98)00149-x. [DOI] [PubMed] [Google Scholar]
  16. Le Fur G., Guilloux F., Rufat P., Benavides J., Uzan A., Renault C., Dubroeucq M. C., Guérémy C. Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3 isoquinolinecarboxamide. II. In vivo studies. Life Sci. 1983 Apr 18;32(16):1849–1856. doi: 10.1016/0024-3205(83)90063-2. [DOI] [PubMed] [Google Scholar]
  17. Lemasters J. J., Nieminen A. L., Qian T., Trost L. C., Elmore S. P., Nishimura Y., Crowe R. A., Cascio W. E., Bradham C. A., Brenner D. A. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):177–196. doi: 10.1016/s0005-2728(98)00112-1. [DOI] [PubMed] [Google Scholar]
  18. Mancini M., Anderson B. O., Caldwell E., Sedghinasab M., Paty P. B., Hockenbery D. M. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol. 1997 Jul 28;138(2):449–469. doi: 10.1083/jcb.138.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mancini M., Sedghinasab M., Knowlton K., Tam A., Hockenbery D., Anderson B. O. Flow cytometric measurement of mitochondrial mass and function: a novel method for assessing chemoresistance. Ann Surg Oncol. 1998 Apr-May;5(3):287–295. doi: 10.1007/BF02303787. [DOI] [PubMed] [Google Scholar]
  20. Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McEnery M. W., Snowman A. M., Trifiletti R. R., Snyder S. H. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3170–3174. doi: 10.1073/pnas.89.8.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miccoli L., Oudard S., Beurdeley-Thomas A., Dutrillaux B., Poupon M. F. Effect of 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide (PK11195), a specific ligand of the peripheral benzodiazepine receptor, on the lipid fluidity of mitochondria in human glioma cells. Biochem Pharmacol. 1999 Aug 15;58(4):715–721. doi: 10.1016/s0006-2952(99)00151-3. [DOI] [PubMed] [Google Scholar]
  23. Miranda S., Foncea R., Guerrero J., Leighton F. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun. 1999 Apr 29;258(1):44–49. doi: 10.1006/bbrc.1999.0580. [DOI] [PubMed] [Google Scholar]
  24. Narita M., Shimizu S., Ito T., Chittenden T., Lutz R. J., Matsuda H., Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14681–14686. doi: 10.1073/pnas.95.25.14681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Papadopoulos V., Amri H., Boujrad N., Cascio C., Culty M., Garnier M., Hardwick M., Li H., Vidic B., Brown A. S. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids. 1997 Jan;62(1):21–28. doi: 10.1016/s0039-128x(96)00154-7. [DOI] [PubMed] [Google Scholar]
  26. Pastorino J. G., Simbula G., Gilfor E., Hoek J. B., Farber J. L. Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone. J Biol Chem. 1994 Dec 9;269(49):31041–31046. [PubMed] [Google Scholar]
  27. Pastorino J. G., Simbula G., Yamamoto K., Glascott P. A., Jr, Rothman R. J., Farber J. L. The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem. 1996 Nov 22;271(47):29792–29798. doi: 10.1074/jbc.271.47.29792. [DOI] [PubMed] [Google Scholar]
  28. Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
  29. Reers M., Smiley S. T., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 1995;260:406–417. doi: 10.1016/0076-6879(95)60154-6. [DOI] [PubMed] [Google Scholar]
  30. Shimizu S., Narita M., Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999 Jun 3;399(6735):483–487. doi: 10.1038/20959. [DOI] [PubMed] [Google Scholar]
  31. Shiraishi T., Black K. L., Ikezaki K., Becker D. P. Peripheral benzodiazepine induces morphological changes and proliferation of mitochondria in glioma cells. J Neurosci Res. 1991 Nov;30(3):463–474. doi: 10.1002/jnr.490300303. [DOI] [PubMed] [Google Scholar]
  32. Tanimoto Y., Onishi Y., Sato Y., Kizaki H. Benzodiazepine receptor agonists modulate thymocyte apoptosis through reduction of the mitochondrial transmembrane potential. Jpn J Pharmacol. 1999 Feb;79(2):177–183. doi: 10.1254/jjp.79.177. [DOI] [PubMed] [Google Scholar]
  33. Verma A., Facchina S. L., Hirsch D. J., Song S. Y., Dillahey L. F., Williams J. R., Snyder S. H. Photodynamic tumor therapy: mitochondrial benzodiazepine receptors as a therapeutic target. Mol Med. 1998 Jan;4(1):40–45. [PMC free article] [PubMed] [Google Scholar]
  34. Wilson K. G. Methods and mechanisms in electrodermal omission responding: a commentary on stimulus omission and the orienting response by Barry and O'Gorman. Biol Psychol. 1989 Jun;28(3):265–269. doi: 10.1016/0301-0511(89)90005-7. [DOI] [PubMed] [Google Scholar]
  35. Wright G., Reichenbecher V. The effects of superoxide and the peripheral benzodiazepine receptor ligands on the mitochondrial processing of manganese-dependent superoxide dismutase. Exp Cell Res. 1999 Feb 1;246(2):443–450. doi: 10.1006/excr.1998.4331. [DOI] [PubMed] [Google Scholar]
  36. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zisterer D. M., Hance N., Campiani G., Garofalo A., Nacci V., Williams D. C. Antiproliferative action of pyrrolobenzoxazepine derivatives in cultured cells: absence of correlation with binding to the peripheral-type benzodiazepine binding site. Biochem Pharmacol. 1998 Feb 15;55(4):397–403. doi: 10.1016/s0006-2952(97)00500-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES