Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jun;84(11):1535–1543. doi: 10.1054/bjoc.2001.1820

Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells

A Di Paolo 1, R Danesi 1, S Caputo 1, M Macchia 2, M Lastella 1, U Boggi 3, F Mosca 3, A Marchetti 4, M Del Tacca 1
PMCID: PMC2363657  PMID: 11384105

Abstract

Proteins belonging to the ras superfamily are involved in cell proliferation of normal and neoplastic tissues. To be biologically active, they require post-translational isoprenylation by farnesyl-transferase and geranylgeranyl-transferase. Enzyme inhibition by drugs may thus represent a promising approach to the treatment of cancer. Therefore, the combined effect of BAL9611, a novel inhibitor of geranylgeranylation, and manumycin, a farnesyl-transferase inhibitor, was evaluated on the SW620 human colon cancer cell line which harbours a mutated K-ras gene. BAL9611 and manumycin dose-dependently inhibited SW620 cell growth with 50% inhibitory concentration (IC 50) of 0.47 ± 0.03 and 5.24 ± 1.41 μM (mean ± SE), respectively. The isobologram analysis performed at the IC 50 level revealed that the combined treatment was highly synergistic with respect to cell growth inhibition. BAL9611 and manumycin were able to inhibit the geranylgeranylation of p21rhoA and farnesylation of p21ras; both drugs inhibited p42ERK2/MAPK phosphorylation, but their combination was more effective than either drug alone. Moreover, the enhanced inhibition of cell growth in vitro by the BAL9611-manumycin combination was also observed in vivo in CD nu/nu female mice xenografted with SW620 tumours. Finally, both drugs were able to induce cell death by apoptosis in vitro and in vivo, as demonstrated by perinuclear chromatin condensation, cytoplasm budding and nuclear fragmentation, and interoligonucleosomal DNA digestion. In conclusion, the inhibition of protein farnesylation enhances the chemotherapeutic effect of BAL9611 in vitro and in vivo in a synergistic fashion, as a result of the impairment of post-translational isoprenylation of proteins and phosphorylation of p42ERK2/MAPK, whose activation is associated with post-translational geranylgeranylation and farnesylation of p21rhoA and p21ras. © 2001 Cancer ResearchCampaign http://www.bjcancer.com

Keywords: isoprenylation, colon cancer, ras superfamily, isoprenyl transferases, inhibitors, cytotoxicity

Full Text

The Full Text of this article is available as a PDF (165.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell S. L., Khosravi-Far R., Rossman K. L., Clark G. J., Der C. J. Increasing complexity of Ras signaling. Oncogene. 1998 Sep 17;17(11 REVIEWS):1395–1413. doi: 10.1038/sj.onc.1202174. [DOI] [PubMed] [Google Scholar]
  2. Danesi R., Figg W. D., Reed E., Myers C. E. Paclitaxel (taxol) inhibits protein isoprenylation and induces apoptosis in PC-3 human prostate cancer cells. Mol Pharmacol. 1995 Jun;47(6):1106–1111. [PubMed] [Google Scholar]
  3. Danesi R., Nardini D., Basolo F., Del Tacca M., Samid D., Myers C. E. Phenylacetate inhibits protein isoprenylation and growth of the androgen-independent LNCaP prostate cancer cells transfected with the T24 Ha-ras oncogene. Mol Pharmacol. 1996 Jun;49(6):972–979. [PubMed] [Google Scholar]
  4. Di Paolo A., Danesi R., Nardini D., Bocci G., Innocenti F., Fogli S., Barachini S., Marchetti A., Bevilacqua G., Del Tacca M. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumour cells. Br J Cancer. 2000 Feb;82(4):905–912. doi: 10.1054/bjoc.1999.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fu H. W., Casey P. J. Enzymology and biology of CaaX protein prenylation. Recent Prog Horm Res. 1999;54:315–343. [PubMed] [Google Scholar]
  6. Gandhi A., Holland P. A., Knox W. F., Potten C. S., Bundred N. J. Evidence of significant apoptosis in poorly differentiated ductal carcinoma in situ of the breast. Br J Cancer. 1998 Sep;78(6):788–794. doi: 10.1038/bjc.1998.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greco W. R., Bravo G., Parsons J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995 Jun;47(2):331–385. [PubMed] [Google Scholar]
  8. Hara M., Akasaka K., Akinaga S., Okabe M., Nakano H., Gomez R., Wood D., Uh M., Tamanoi F. Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2281–2285. doi: 10.1073/pnas.90.6.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirai A., Nakamura S., Noguchi Y., Yasuda T., Kitagawa M., Tatsuno I., Oeda T., Tahara K., Terano T., Narumiya S. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem. 1997 Jan 3;272(1):13–16. [PubMed] [Google Scholar]
  10. Hsueh C. T., Chiu C. F., Kelsen D. P., Schwartz G. K. Selective inhibition of cyclooxygenase-2 enhances mitomycin-C-induced apoptosis. Cancer Chemother Pharmacol. 2000;45(5):389–396. doi: 10.1007/s002800051007. [DOI] [PubMed] [Google Scholar]
  11. James G. L., Goldstein J. L., Brown M. S. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem. 1995 Mar 17;270(11):6221–6226. doi: 10.1074/jbc.270.11.6221. [DOI] [PubMed] [Google Scholar]
  12. James G., Goldstein J. L., Brown M. S. Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4454–4458. doi: 10.1073/pnas.93.9.4454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaibuchi K., Kuroda S., Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem. 1999;68:459–486. doi: 10.1146/annurev.biochem.68.1.459. [DOI] [PubMed] [Google Scholar]
  14. Kainuma O., Asano T., Hasegawa M., Kenmochi T., Nakagohri T., Tokoro Y., Isono K. Inhibition of growth and invasive activity of human pancreatic cancer cells by a farnesyltransferase inhibitor, manumycin. Pancreas. 1997 Nov;15(4):379–383. doi: 10.1097/00006676-199711000-00008. [DOI] [PubMed] [Google Scholar]
  15. Lebowitz P. F., Prendergast G. C. Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene. 1998 Sep 17;17(11 REVIEWS):1439–1445. doi: 10.1038/sj.onc.1202175. [DOI] [PubMed] [Google Scholar]
  16. Macchia M., Jannitti N., Gervasi G., Danesi R. Geranylgeranyl diphosphate-based inhibitors of post-translational geranylgeranylation of cellular proteins. J Med Chem. 1996 Mar 29;39(7):1352–1356. doi: 10.1021/jm960127s. [DOI] [PubMed] [Google Scholar]
  17. Marchetti A., Buttitta F., Pellegrini S., Chella A., Bertacca G., Filardo A., Tognoni V., Ferreli F., Signorini E., Angeletti C. A. Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. J Pathol. 1996 Jul;179(3):254–259. doi: 10.1002/(SICI)1096-9896(199607)179:3<254::AID-PATH589>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  18. Marshall C. J. Ras effectors. Curr Opin Cell Biol. 1996 Apr;8(2):197–204. doi: 10.1016/s0955-0674(96)80066-4. [DOI] [PubMed] [Google Scholar]
  19. McGuire T. F., Qian Y., Vogt A., Hamilton A. D., Sebti S. M. Platelet-derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation but not farnesylation. J Biol Chem. 1996 Nov 1;271(44):27402–27407. doi: 10.1074/jbc.271.44.27402. [DOI] [PubMed] [Google Scholar]
  20. Minamoto T., Mai M., Ronai Z. K-ras mutation: early detection in molecular diagnosis and risk assessment of colorectal, pancreas, and lung cancers--a review. Cancer Detect Prev. 2000;24(1):1–12. [PubMed] [Google Scholar]
  21. Miquel K., Pradines A., Sun J., Qian Y., Hamilton A. D., Sebti S. M., Favre G. GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 1997 May 15;57(10):1846–1850. [PubMed] [Google Scholar]
  22. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  23. Olson M. F., Paterson H. F., Marshall C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature. 1998 Jul 16;394(6690):295–299. doi: 10.1038/28425. [DOI] [PubMed] [Google Scholar]
  24. Prendergast G. C., Khosravi-Far R., Solski P. A., Kurzawa H., Lebowitz P. F., Der C. J. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene. 1995 Jun 15;10(12):2289–2296. [PubMed] [Google Scholar]
  25. Rowinsky E. K., Windle J. J., Von Hoff D. D. Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol. 1999 Nov;17(11):3631–3652. doi: 10.1200/JCO.1999.17.11.3631. [DOI] [PubMed] [Google Scholar]
  26. Sah V. P., Seasholtz T. M., Sagi S. A., Brown J. H. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol. 2000;40:459–489. doi: 10.1146/annurev.pharmtox.40.1.459. [DOI] [PubMed] [Google Scholar]
  27. Seasholtz T. M., Majumdar M., Brown J. H. Rho as a mediator of G protein-coupled receptor signaling. Mol Pharmacol. 1999 Jun;55(6):949–956. doi: 10.1124/mol.55.6.949. [DOI] [PubMed] [Google Scholar]
  28. Sinensky M. Recent advances in the study of prenylated proteins. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):93–106. doi: 10.1016/s1388-1981(00)00009-3. [DOI] [PubMed] [Google Scholar]
  29. Steel G. G., Peckham M. J. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 1979 Jan;5(1):85–91. doi: 10.1016/0360-3016(79)90044-0. [DOI] [PubMed] [Google Scholar]
  30. Sun J., Blaskovich M. A., Knowles D., Qian Y., Ohkanda J., Bailey R. D., Hamilton A. D., Sebti S. M. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res. 1999 Oct 1;59(19):4919–4926. [PubMed] [Google Scholar]
  31. Sun J., Qian Y., Hamilton A. D., Sebti S. M. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene. 1998 Mar;16(11):1467–1473. doi: 10.1038/sj.onc.1201656. [DOI] [PubMed] [Google Scholar]
  32. Tomayko M. M., Reynolds C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24(3):148–154. doi: 10.1007/BF00300234. [DOI] [PubMed] [Google Scholar]
  33. Vogt A., Qian Y., McGuire T. F., Hamilton A. D., Sebti S. M. Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene. 1996 Nov 7;13(9):1991–1999. [PubMed] [Google Scholar]
  34. Zohn I. M., Campbell S. L., Khosravi-Far R., Rossman K. L., Der C. J. Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene. 1998 Sep 17;17(11 REVIEWS):1415–1438. doi: 10.1038/sj.onc.1202181. [DOI] [PubMed] [Google Scholar]
  35. Zujewski J., Horak I. D., Bol C. J., Woestenborghs R., Bowden C., End D. W., Piotrovsky V. K., Chiao J., Belly R. T., Todd A. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol. 2000 Feb;18(4):927–941. doi: 10.1200/JCO.2000.18.4.927. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES