Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jun;84(11):1497–1504. doi: 10.1054/bjoc.2001.1824

Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’olorectal carcinomas

S Shimada 1, K Shiomori 1, S Tashima 1, J Tsuruta 2, M Ogawa 1
PMCID: PMC2363669  PMID: 11384100

Abstract

‘de novo’ carcinogenesis has been advocated besides ‘adenoma carcinoma sequence’ as another dominant pathway leading to colorectal carcinoma. Our recent study has demonstrated that the distribution of brain (fetal)-type glycogen phosphorylase (BGP) positive foci (BGP foci) has a close relationship with the location of ‘de novo’ carcinoma. The aims of the present study are to investigate genetic alteration in the BGP foci and to characterize them in the ‘de novo’ carcinogenesis. 17 colorectal carcinomas without any adenoma component expressing both immunoreactive p53 and BGP protein were selected from 96 resected specimens from our previous study. Further investigations to examine the proliferating cell nuclear antigen (PCNA)-labelling index, and the p53 and the codon 12 of K-ras mutation using the polymerase chain reaction-single strand conformation polymorphism were performed in the BGP foci, BGP negative mucosa and carcinoma. The BGP foci were observed sporadically in the transitional mucosa adjacent to the carcinoma in all cases. The PCNA labelling index in the BGP foci was significantly higher than that in the BGP negative mucosa (P< 0.001). p53 mutations were observed in 8 carcinomas, but no K-ras mutation was detected. Interestingly, although none of the overexpressions of p53 protein was detected immunohistochemically in the BGP positive foci, the p53 gene frequently (41.2% of the BGP foci tested) mutated in spite of no K-ras mutation. The present study demonstrates potentially premalignant foci in the colorectal transitional mucosa with frequent p53 gene mutation. It is suggested that BGP foci are promising candidates for the further investigation of ‘de novo’ colorectal carcinogenesis. © 2001Cancer Research Campaign http://www.bjcancer.com

Keywords: colorectal carcinoma, ‘de novo’, carcinoma, glycogen phosphorylase, p53, K-ras, transitional mucosa

Full Text

The Full Text of this article is available as a PDF (452.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki T., Takeda S., Yanagisawa A., Kato Y., Ajioka Y., Watanabe H., Kudo S., Nakamura Y. APC and p53 mutations in de novo colorectal adenocarcinomas. Hum Mutat. 1994;3(4):342–346. doi: 10.1002/humu.1380030403. [DOI] [PubMed] [Google Scholar]
  2. Baker S. J., Preisinger A. C., Jessup J. M., Paraskeva C., Markowitz S., Willson J. K., Hamilton S., Vogelstein B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990 Dec 1;50(23):7717–7722. [PubMed] [Google Scholar]
  3. Bird R. P. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 1987 Oct 30;37(2):147–151. doi: 10.1016/0304-3835(87)90157-1. [DOI] [PubMed] [Google Scholar]
  4. Brito M. J., Filipe M. I., Morris R. W. Cell proliferation study on gastric carcinoma and non-involved gastric mucosa using a bromodeoxyuridine (BrdU) labelling technique. Eur J Cancer Prev. 1992 Oct;1(6):429–435. doi: 10.1097/00008469-199210000-00006. [DOI] [PubMed] [Google Scholar]
  5. Buchman V. L., Chumakov P. M., Ninkina N. N., Samarina O. P., Georgiev G. P. A variation in the structure of the protein-coding region of the human p53 gene. Gene. 1988 Oct 30;70(2):245–252. doi: 10.1016/0378-1119(88)90196-5. [DOI] [PubMed] [Google Scholar]
  6. Davis C. H., Schliselfeld L. H., Wolf D. P., Leavitt C. A., Krebs E. G. Interrelationships among glycogen phosphorylase isozymes. J Biol Chem. 1967 Oct 25;242(20):4824–4833. [PubMed] [Google Scholar]
  7. Fearon E. R., Jones P. A. Progressing toward a molecular description of colorectal cancer development. FASEB J. 1992 Jul;6(10):2783–2790. doi: 10.1096/fasebj.6.10.1321771. [DOI] [PubMed] [Google Scholar]
  8. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  9. Filipe M. I., Cooke K. B. Changes in composition of mucin in the mucosa adjacent to carcinoma of the colon as compared with the normal: a biochemical investigation. J Clin Pathol. 1974 Apr;27(4):315–318. doi: 10.1136/jcp.27.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gelinas R. P., Froman B. E., McElroy F., Tait R. C., Gorin F. A. Human brain glycogen phosphorylase: characterization of fetal cDNA and genomic sequences. Brain Res Mol Brain Res. 1989 Nov;6(2-3):177–185. doi: 10.1016/0169-328x(89)90052-1. [DOI] [PubMed] [Google Scholar]
  11. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  12. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  13. Ignacio P. C., Baldwin B. A., Vijayan V. K., Tait R. C., Gorin F. A. Brain isozyme of glycogen phosphorylase: immunohistological localization within the central nervous system. Brain Res. 1990 Oct 8;529(1-2):42–49. doi: 10.1016/0006-8993(90)90809-p. [DOI] [PubMed] [Google Scholar]
  14. Jordanova A., Kalaydjieva L., Savov A., Claustres M., Schwarz M., Estivill X., Angelicheva D., Haworth A., Casals T., Kremensky I. SSCP analysis: a blind sensitivity trial. Hum Mutat. 1997;10(1):65–70. doi: 10.1002/(SICI)1098-1004(1997)10:1<65::AID-HUMU9>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  15. KREBS E. G., FISCHER E. H. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta. 1956 Apr;20(1):150–157. doi: 10.1016/0006-3002(56)90273-6. [DOI] [PubMed] [Google Scholar]
  16. Kuramoto S., Oohara T. Minute cancers arising de novo in the human large intestine. Cancer. 1988 Feb 15;61(4):829–834. doi: 10.1002/1097-0142(19880215)61:4<829::aid-cncr2820610431>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  17. Levine A. J., Perry M. E., Chang A., Silver A., Dittmer D., Wu M., Welsh D. The 1993 Walter Hubert Lecture: the role of the p53 tumour-suppressor gene in tumorigenesis. Br J Cancer. 1994 Mar;69(3):409–416. doi: 10.1038/bjc.1994.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lisboa B. W., Vogtländer S., Gilster T., Riethdorf L., Milde-Langosch K., Löning T. Molecular and immunohistochemical analysis of p53 mutations in scrapings and tissue from preinvasive and invasive breast cancer. Virchows Arch. 1997 Dec;431(6):375–381. doi: 10.1007/s004280050114. [DOI] [PubMed] [Google Scholar]
  19. Lohmann D., Ruhri C., Schmitt M., Graeff H., Höfler H. Accumulation of p53 protein as an indicator for p53 gene mutation in breast cancer. Occurrence of false-positives and false-negatives. Diagn Mol Pathol. 1993 Mar;2(1):36–41. [PubMed] [Google Scholar]
  20. Matsuzaki H., Shimada S., Uno K., Tsuruta J., Ogawa M. Novel subtyping of intestinal metaplasia in the human stomach: brain-type glycogen phosphorylase expression in the proliferative zone and its relationship with carcinogenesis. Am J Clin Pathol. 1998 Feb;109(2):181–189. doi: 10.1093/ajcp/109.2.181. [DOI] [PubMed] [Google Scholar]
  21. Minamoto T., Sawaguchi K., Mai M., Yamashita N., Sugimura T., Esumi H. Infrequent K-ras activation in superficial-type (flat) colorectal adenomas and adenocarcinomas. Cancer Res. 1994 Jun 1;54(11):2841–2844. [PubMed] [Google Scholar]
  22. Ming S. C., Goldman H., Freiman D. G. Intestinal metaplasia and histogenesis of carcinoma in human stomach. Light and electron microscopic study. Cancer. 1967 Sep;20(9):1418–1429. doi: 10.1002/1097-0142(196709)20:9<1418::aid-cncr2820200908>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  23. Morson B. President's address. The polyp-cancer sequence in the large bowel. Proc R Soc Med. 1974 Jun;67(6 Pt 1):451–457. doi: 10.1177/00359157740676P115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mueller J., Mueller E., Hoepner I., Jütting J., Bethke B., Stolte M., Höfler H. Expression of bcl-2 and p53 in de novo and ex-adenoma colon carcinoma: a comparative immunohistochemical study. J Pathol. 1996 Nov;180(3):259–265. doi: 10.1002/(SICI)1096-9896(199611)180:3<259::AID-PATH654>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  25. Nagayo T. Microscopical cancer of the stomach--a study on histogenesis of gastric carcinoma. Int J Cancer. 1975 Jul 15;16(1):52–60. doi: 10.1002/ijc.2910160107. [DOI] [PubMed] [Google Scholar]
  26. Nakano K., Hwang P. K., Fletterick R. J. Complete cDNA sequence for rabbit muscle glycogen phosphorylase. FEBS Lett. 1986 Aug 18;204(2):283–287. doi: 10.1016/0014-5793(86)80829-8. [DOI] [PubMed] [Google Scholar]
  27. Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
  28. Newgard C. B., Littman D. R., van Genderen C., Smith M., Fletterick R. J. Human brain glycogen phosphorylase. Cloning, sequence analysis, chromosomal mapping, tissue expression, and comparison with the human liver and muscle isozymes. J Biol Chem. 1988 Mar 15;263(8):3850–3857. [PubMed] [Google Scholar]
  29. Oohara T., Tohma H., Takezoe K., Ukawa S., Johjima Y., Asakura R., Aono G., Kurosaka H. Minute gastric cancers less than 5 mm in diameter. Cancer. 1982 Aug 15;50(4):801–810. doi: 10.1002/1097-0142(19820815)50:4<801::aid-cncr2820500431>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  30. Pretlow T. P., Brasitus T. A., Fulton N. C., Cheyer C., Kaplan E. L. K-ras mutations in putative preneoplastic lesions in human colon. J Natl Cancer Inst. 1993 Dec 15;85(24):2004–2007. doi: 10.1093/jnci/85.24.2004. [DOI] [PubMed] [Google Scholar]
  31. Rembacken B. J., Fujii T., Cairns A., Dixon M. F., Yoshida S., Chalmers D. M., Axon A. T. Flat and depressed colonic neoplasms: a prospective study of 1000 colonoscopies in the UK. Lancet. 2000 Apr 8;355(9211):1211–1214. doi: 10.1016/s0140-6736(00)02086-9. [DOI] [PubMed] [Google Scholar]
  32. Sato K., Morris H. P., Weinhouse S. Phosphorylase: a new isozyme in rat hepatic tumors and fetal liver. Science. 1972 Nov 24;178(4063):879–881. doi: 10.1126/science.178.4063.879. [DOI] [PubMed] [Google Scholar]
  33. Shamsuddin A. M., Kato Y., Kunishima N., Sugano H., Trump B. F. Carcinoma in situ in nonpolypoid mucosa of the large intestine. Report of a case with significance in strategies for early detection. Cancer. 1985 Dec 15;56(12):2849–2854. doi: 10.1002/1097-0142(19851215)56:12<2849::aid-cncr2820561222>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  34. Shi S. R., Key M. E., Kalra K. L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem. 1991 Jun;39(6):741–748. doi: 10.1177/39.6.1709656. [DOI] [PubMed] [Google Scholar]
  35. Shiao Y. H., Rugge M., Correa P., Lehmann H. P., Scheer W. D. p53 alteration in gastric precancerous lesions. Am J Pathol. 1994 Mar;144(3):511–517. [PMC free article] [PubMed] [Google Scholar]
  36. Shimada S., Honmyo U., Yagi Y., Ikeda T., Ogawa M., Yokota T. Expression of glycogen phosphorylase activity in minute gastric carcinoma. Am J Gastroenterol. 1992 Sep;87(9):1230–1231. [PubMed] [Google Scholar]
  37. Shimada S., Maeno M., Akagi M., Hatayama I., Sato T., Sato K. Immunohistochemical detection of glycogen phosphorylase isoenzymes in rat and human tissues. Histochem J. 1986 Jun;18(6):334–338. doi: 10.1007/BF01675212. [DOI] [PubMed] [Google Scholar]
  38. Shimada S., Maeno M., Misumi A., Akagi M. Histochemical study of phosphorylase in proliferating cells of intestinal metaplasia and carcinoma of the human stomach. Scand J Gastroenterol. 1984 Oct;19(7):965–970. [PubMed] [Google Scholar]
  39. Shimada S., Maeno M., Misumi A., Takano S., Akagi M. Antigen reversion of glycogen phosphorylase isoenzyme in carcinoma and proliferative zone of intestinal metaplasia of the human stomach. An immunohistochemical study. Gastroenterology. 1987 Jul;93(1):35–40. doi: 10.1016/0016-5085(87)90310-6. [DOI] [PubMed] [Google Scholar]
  40. Shimada S., Tashima S., Yamaguchi K., Matsuzaki H., Ogawa M. Carcinogenesis of intestinal-type gastric cancer and colorectal cancer is commonly accompanied by expression of brain (fetal)-type glycogen phosphorylase. J Exp Clin Cancer Res. 1999 Mar;18(1):111–118. [PubMed] [Google Scholar]
  41. Shimoda T., Ikegami M., Fujisaki J., Matsui T., Aizawa S., Ishikawa E. Early colorectal carcinoma with special reference to its development de novo. Cancer. 1989 Sep 1;64(5):1138–1146. doi: 10.1002/1097-0142(19890901)64:5<1138::aid-cncr2820640529>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  42. Shivapurkar N., Huang L., Ruggeri B., Swalsky P. A., Bakker A., Finkelstein S., Frost A., Silverberg S. K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Cancer Lett. 1997 May 1;115(1):39–46. doi: 10.1016/s0304-3835(97)04709-5. [DOI] [PubMed] [Google Scholar]
  43. Tashima S., Shimada S., Yamaguchi K., Tsuruta J., Ogawa M. Expression of brain-type glycogen phosphorylase is a potentially novel early biomarker in the carcinogenesis of human colorectal carcinomas. Am J Gastroenterol. 2000 Jan;95(1):255–263. doi: 10.1111/j.1572-0241.2000.01692.x. [DOI] [PubMed] [Google Scholar]
  44. Umetani N., Sasaki S., Masaki T., Watanabe T., Matsuda K., Muto T. Involvement of APC and K-ras mutation in non-polypoid colorectal tumorigenesis. Br J Cancer. 2000 Jan;82(1):9–15. doi: 10.1054/bjoc.1999.0869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  46. Wang Q., Gao H., Chen Y., Wang Y., He J., Jin C. Biopathologic characteristics of DNA content in crypt cells of transitional mucosa adjacent to carcinomas of the rectum and rectosigmoid. Dis Colon Rectum. 1992 Jul;35(7):670–675. doi: 10.1007/BF02053758. [DOI] [PubMed] [Google Scholar]
  47. Yamagata S., Muto T., Uchida Y., Masaki T., Sawada T., Tsuno N., Hirooka T. Lower incidence of K-ras codon 12 mutation in flat colorectal adenomas than in polypoid adenomas. Jpn J Cancer Res. 1994 Feb;85(2):147–151. doi: 10.1111/j.1349-7006.1994.tb02075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang H., Nordenskjöld B., Dufmats M., Söderkvist P., Sun X. F. K-ras mutations in colorectal adenocarcinomas and neighbouring transitional mucosa. Eur J Cancer. 1998 Dec;34(13):2053–2057. doi: 10.1016/s0959-8049(98)00283-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES