Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1994 Jul;68(7):4427–4431. doi: 10.1128/jvi.68.7.4427-4431.1994

Mutation in the UL97 open reading frame of human cytomegalovirus strains resistant to ganciclovir.

N S Lurain 1, L E Spafford 1, K D Thompson 1
PMCID: PMC236367  PMID: 8207815

Abstract

The same point mutation in the human cytomegalovirus UL97 open reading frame was found in three independently isolated ganciclovir-resistant mutants of strain AD169. Point mutations in the DNA polymerase genes of these strains have been previously identified (N.S. Lurain, K.D. Thompson, E.W. Holmes, and G.S. Read, J. Virol. 66:7146-7152, 1992). All three strains are, therefore, double mutants. To determine the contribution of the UL97 mutation to the high ganciclovir resistance of these mutants, the mutation from the ganciclovir-resistant strain D6/3/1 was transferred to the wild-type strain AD169 to produce the recombinant R6HS. The ganciclovir resistance of R6HS is 4-fold lower than that of D6/3/1 but 10-fold higher than that of AD169. R6HS, like AD169, is sensitive to the nucleotide analogs (S)-1-[(3-hydroxy-2-phosphonylmethoxy) propyl]adenine and (S)-1-[(3-hydroxy-2-phosphonylmethoxy)propyl]cytosine. Ganciclovir phosphorylation in R6HS-infected cells was at the same reduced level as that found in cells infected with the parental mutant D6/3/1. The same G-to-T transversion at nucleotide 1380 in the UL97 coding sequence is present in both R6HS and D6/3/1. This mutation results in the substitution of isoleucine for methionine at amino acid residue 460. In an alignment of the R6HS UL97 amino acid sequence with the amino acid sequences of a wide range of protein kinase family members, methionine 460 lies within a highly conserved region which may function in nucleotide binding and phosphate transfer.

Full text

PDF
4427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balfour H. H., Jr, Chace B. A., Stapleton J. T., Simmons R. L., Fryd D. S. A randomized, placebo-controlled trial of oral acyclovir for the prevention of cytomegalovirus disease in recipients of renal allografts. N Engl J Med. 1989 May 25;320(21):1381–1387. doi: 10.1056/NEJM198905253202105. [DOI] [PubMed] [Google Scholar]
  2. Baylis S. A., Banham A. H., Vydelingum S., Dixon L. K., Smith G. L. African swine fever virus encodes a serine protein kinase which is packaged into virions. J Virol. 1993 Aug;67(8):4549–4556. doi: 10.1128/jvi.67.8.4549-4556.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biron K. K., Fyfe J. A., Stanat S. C., Leslie L. K., Sorrell J. B., Lambe C. U., Coen D. M. A human cytomegalovirus mutant resistant to the nucleoside analog 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8769–8773. doi: 10.1073/pnas.83.22.8769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biron K. K., Stanat S. C., Sorrell J. B., Fyfe J. A., Keller P. M., Lambe C. U., Nelson D. J. Metabolic activation of the nucleoside analog 9-[( 2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human diploid fibroblasts infected with human cytomegalovirus. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2473–2477. doi: 10.1073/pnas.82.8.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner S. Phosphotransferase sequence homology. Nature. 1987 Sep 3;329(6134):21–21. doi: 10.1038/329021a0. [DOI] [PubMed] [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., 3rd, Kouzarides T., Martignetti J. A. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990;154:125–169. doi: 10.1007/978-3-642-74980-3_6. [DOI] [PubMed] [Google Scholar]
  7. Chee M. S., Lawrence G. L., Barrell B. G. Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol. 1989 May;70(Pt 5):1151–1160. doi: 10.1099/0022-1317-70-5-1151. [DOI] [PubMed] [Google Scholar]
  8. Cunningham C., Davison A. J., Dolan A., Frame M. C., McGeoch D. J., Meredith D. M., Moss H. W., Orr A. C. The UL13 virion protein of herpes simplex virus type 1 is phosphorylated by a novel virus-induced protein kinase. J Gen Virol. 1992 Feb;73(Pt 2):303–311. doi: 10.1099/0022-1317-73-2-303. [DOI] [PubMed] [Google Scholar]
  9. Darby G., Field H. J., Salisbury S. A. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature. 1981 Jan 1;289(5793):81–83. doi: 10.1038/289081a0. [DOI] [PubMed] [Google Scholar]
  10. Erice A., Chou S., Biron K. K., Stanat S. C., Balfour H. H., Jr, Jordan M. C. Progressive disease due to ganciclovir-resistant cytomegalovirus in immunocompromised patients. N Engl J Med. 1989 Feb 2;320(5):289–293. doi: 10.1056/NEJM198902023200505. [DOI] [PubMed] [Google Scholar]
  11. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  12. Hoekstra M. F., Liskay R. M., Ou A. C., DeMaggio A. J., Burbee D. G., Heffron F. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science. 1991 Aug 30;253(5023):1031–1034. doi: 10.1126/science.1887218. [DOI] [PubMed] [Google Scholar]
  13. Lacasa M. A protein kinase-related gene within the channel catfish herpesvirus genome. Nucleic Acids Res. 1990 May 25;18(10):3050–3050. doi: 10.1093/nar/18.10.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lawrence G. L., Chee M., Craxton M. A., Gompels U. A., Honess R. W., Barrell B. G. Human herpesvirus 6 is closely related to human cytomegalovirus. J Virol. 1990 Jan;64(1):287–299. doi: 10.1128/jvi.64.1.287-299.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin S., Chen W., Broyles S. S. The vaccinia virus B1R gene product is a serine/threonine protein kinase. J Virol. 1992 May;66(5):2717–2723. doi: 10.1128/jvi.66.5.2717-2723.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Littler E., Stuart A. D., Chee M. S. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature. 1992 Jul 9;358(6382):160–162. doi: 10.1038/358160a0. [DOI] [PubMed] [Google Scholar]
  17. Lurain N. S., Thompson K. D., Holmes E. W., Read G. S. Point mutations in the DNA polymerase gene of human cytomegalovirus that result in resistance to antiviral agents. J Virol. 1992 Dec;66(12):7146–7152. doi: 10.1128/jvi.66.12.7146-7152.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Merigan T. C., Renlund D. G., Keay S., Bristow M. R., Starnes V., O'Connell J. B., Resta S., Dunn D., Gamberg P., Ratkovec R. M. A controlled trial of ganciclovir to prevent cytomegalovirus disease after heart transplantation. N Engl J Med. 1992 Apr 30;326(18):1182–1186. doi: 10.1056/NEJM199204303261803. [DOI] [PubMed] [Google Scholar]
  19. Meyers J. D., Reed E. C., Shepp D. H., Thornquist M., Dandliker P. S., Vicary C. A., Flournoy N., Kirk L. E., Kersey J. H., Thomas E. D. Acyclovir for prevention of cytomegalovirus infection and disease after allogeneic marrow transplantation. N Engl J Med. 1988 Jan 14;318(2):70–75. doi: 10.1056/NEJM198801143180202. [DOI] [PubMed] [Google Scholar]
  20. Overton H. A., McMillan D. J., Klavinskis L. S., Hope L., Ritchie A. J., Wong-kai-in P. Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology. 1992 Sep;190(1):184–192. doi: 10.1016/0042-6822(92)91204-8. [DOI] [PubMed] [Google Scholar]
  21. Purves F. C., Roizman B. The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7310–7314. doi: 10.1073/pnas.89.16.7310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmidt G. M., Horak D. A., Niland J. C., Duncan S. R., Forman S. J., Zaia J. A. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; The City of Hope-Stanford-Syntex CMV Study Group. N Engl J Med. 1991 Apr 11;324(15):1005–1011. doi: 10.1056/NEJM199104113241501. [DOI] [PubMed] [Google Scholar]
  23. Shigeta S., Konno K., Baba M., Yokota T., De Clercq E. Comparative inhibitory effects of nucleoside analogues on different clinical isolates of human cytomegalovirus in vitro. J Infect Dis. 1991 Feb;163(2):270–275. doi: 10.1093/infdis/163.2.270. [DOI] [PubMed] [Google Scholar]
  24. Smee D. F., Boehme R., Chernow M., Binko B. P., Matthews T. R. Intracellular metabolism and enzymatic phosphorylation of 9-(1,3-dihydroxy-2-propoxymethyl)guanine and acyclovir in herpes simplex virus-infected and uninfected cells. Biochem Pharmacol. 1985 Apr 1;34(7):1049–1056. doi: 10.1016/0006-2952(85)90608-2. [DOI] [PubMed] [Google Scholar]
  25. Smith R. F., Smith T. F. Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus. J Virol. 1989 Jan;63(1):450–455. doi: 10.1128/jvi.63.1.450-455.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stanat S. C., Reardon J. E., Erice A., Jordan M. C., Drew W. L., Biron K. K. Ganciclovir-resistant cytomegalovirus clinical isolates: mode of resistance to ganciclovir. Antimicrob Agents Chemother. 1991 Nov;35(11):2191–2197. doi: 10.1128/aac.35.11.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sullivan V., Talarico C. L., Stanat S. C., Davis M., Coen D. M., Biron K. K. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature. 1992 Jul 9;358(6382):162–164. doi: 10.1038/358162a0. [DOI] [PubMed] [Google Scholar]
  28. Tatarowicz W. A., Lurain N. S., Thompson K. D. A ganciclovir-resistant clinical isolate of human cytomegalovirus exhibiting cross-resistance to other DNA polymerase inhibitors. J Infect Dis. 1992 Oct;166(4):904–907. doi: 10.1093/infdis/166.4.904. [DOI] [PubMed] [Google Scholar]
  29. Traktman P., Anderson M. K., Rempel R. E. Vaccinia virus encodes an essential gene with strong homology to protein kinases. J Biol Chem. 1989 Dec 25;264(36):21458–21461. [PubMed] [Google Scholar]
  30. de Wind N., Domen J., Berns A. Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells. J Virol. 1992 Sep;66(9):5200–5209. doi: 10.1128/jvi.66.9.5200-5209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES