Abstract
We investigated whether the efficacy of fenretinide (HPR) against ovarian tumours may be limited by induction of resistance. The human ovarian carcinoma cell line A2780, which is sensitive to a pharmacologically achievable HPR concentration (IC 50= 1 μM), became 10-fold more resistant after exposure to increasing HPR concentrations. The cells (A2780/HPR) did not show cross-resistance to the synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and were not sensitive, similarly to the parent line, to all- trans -retinoic acid, 13- cis -retinoic acid or N-(4-methoxyphenyl)retinamide. A2780/HPR cells showed, compared to parental cells, a 3-fold reduction in colony-forming ability in agar. The development of HPR resistance was associated with a marked increase in retinoic acid receptor β (RARβ) mRNA and protein levels, which decreased, together with drug resistance, after drug removal. The expression of cell surface molecules associated with tumour progression including HER-2, laminin receptor and β1 integrin was markedly reduced. The increase in the levels of reactive oxygen species is not involved in HPR-resistance because it was similar in parental and resistant cells. Conversely differences in pharmacokinetics may account for resistance because, in A2780/HPR cells, intracellular peak drug levels were 2 times lower than in A2780 cells and an as yet unidentified polar metabolite was present. These data suggest that acquired resistance to HPR is associated with changes in marker expression, suggestive of a more differentiated status and may be explained, at least in part, by reduced drug accumulation and increased metabolism. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: retinoids, ovarian tumour, fenretinide-resistance, drug uptake, differentiation, RARβ
Full Text
The Full Text of this article is available as a PDF (96.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berchuck A., Kamel A., Whitaker R., Kerns B., Olt G., Kinney R., Soper J. T., Dodge R., Clarke-Pearson D. L., Marks P. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 1990 Jul 1;50(13):4087–4091. [PubMed] [Google Scholar]
- Braakhuis B. J., Klaassen I., van der Leede B. M., Cloos J., Brakenhoff R. H., Copper M. P., Teerlink T., Hendriks H. F., van der Saag P. T., Snow G. B. Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines. Br J Cancer. 1997;76(2):189–197. doi: 10.1038/bjc.1997.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifford J. L., Menter D. G., Wang M., Lotan R., Lippman S. M. Retinoid receptor-dependent and -independent effects of N-(4-hydroxyphenyl)retinamide in F9 embryonal carcinoma cells. Cancer Res. 1999 Jan 1;59(1):14–18. [PubMed] [Google Scholar]
- De Palo G., Veronesi U., Camerini T., Formelli F., Mascotti G., Boni C., Fosser V., Del Vecchio M., Campa T., Costa A. Can fenretinide protect women against ovarian cancer? J Natl Cancer Inst. 1995 Jan 18;87(2):146–147. doi: 10.1093/jnci/87.2.146. [DOI] [PubMed] [Google Scholar]
- Dolo V., Ginestra A., Violini S., Miotti S., Festuccia C., Miceli D., Migliavacca M., Rinaudo C., Romano F. M., Brisdelli F. Ultrastructural and phenotypic characterization of CABA I, a new human ovarian cancer cell line. Oncol Res. 1997;9(3):129–138. [PubMed] [Google Scholar]
- Fanjul A. N., Delia D., Pierotti M. A., Rideout D., Yu J. Q., Pfahl M., Qiu J. 4-Hydroxyphenyl retinamide is a highly selective activator of retinoid receptors. J Biol Chem. 1996 Sep 13;271(37):22441–22446. doi: 10.1074/jbc.271.37.22441. [DOI] [PubMed] [Google Scholar]
- Formelli F., Barua A. B., Olson J. A. Bioactivities of N-(4-hydroxyphenyl) retinamide and retinoyl beta-glucuronide. FASEB J. 1996 Jul;10(9):1014–1024. doi: 10.1096/fasebj.10.9.8801162. [DOI] [PubMed] [Google Scholar]
- Formelli F., Clerici M., Campa T., Di Mauro M. G., Magni A., Mascotti G., Moglia D., De Palo G., Costa A., Veronesi U. Five-year administration of fenretinide: pharmacokinetics and effects on plasma retinol concentrations. J Clin Oncol. 1993 Oct;11(10):2036–2042. doi: 10.1200/JCO.1993.11.10.2036. [DOI] [PubMed] [Google Scholar]
- Houle B., Rochette-Egly C., Bradley W. E. Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):985–989. doi: 10.1073/pnas.90.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oridate N., Suzuki S., Higuchi M., Mitchell M. F., Hong W. K., Lotan R. Involvement of reactive oxygen species in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. J Natl Cancer Inst. 1997 Aug 20;89(16):1191–1198. doi: 10.1093/jnci/89.16.1191. [DOI] [PubMed] [Google Scholar]
- Pellegrini R., Mariotti A., Tagliabue E., Bressan R., Bunone G., Coradini D., Della Valle G., Formelli F., Cleris L., Radice P. Modulation of markers associated with tumor aggressiveness in human breast cancer cell lines by N-(4-hydroxyphenyl) retinamide. Cell Growth Differ. 1995 Jul;6(7):863–869. [PubMed] [Google Scholar]
- Pergolizzi R., Appierto V., Crosti M., Cavadini E., Cleris L., Guffanti A., Formelli F. Role of retinoic acid receptor overexpression in sensitivity to fenretinide and tumorigenicity of human ovarian carcinoma cells. Int J Cancer. 1999 May 31;81(5):829–834. doi: 10.1002/(sici)1097-0215(19990531)81:5<829::aid-ijc26>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Ponzanelli I., Giannì M., Giavazzi R., Garofalo A., Nicoletti I., Reichert U., Erba E., Rambaldi A., Terao M., Garattini E. Isolation and characterization of an acute promyelocytic leukemia cell line selectively resistant to the novel antileukemic and apoptogenic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid. Blood. 2000 Apr 15;95(8):2672–2682. [PubMed] [Google Scholar]
- Rozzo C., Chiesa V., Caridi G., Pagnan G., Ponzoni M. Induction of apoptosis in human neuroblastoma cells by abrogation of integrin-mediated cell adhesion. Int J Cancer. 1997 Mar 17;70(6):688–698. doi: 10.1002/(sici)1097-0215(19970317)70:6<688::aid-ijc11>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Supino R., Crosti M., Clerici M., Warlters A., Cleris L., Zunino F., Formelli F. Induction of apoptosis by fenretinide (4HPR) in human ovarian carcinoma cells and its association with retinoic acid receptor expression. Int J Cancer. 1996 Feb 8;65(4):491–497. doi: 10.1002/(SICI)1097-0215(19960208)65:4<491::AID-IJC17>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Veronesi U., De Palo G., Marubini E., Costa A., Formelli F., Mariani L., Decensi A., Camerini T., Del Turco M. R., Di Mauro M. G. Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst. 1999 Nov 3;91(21):1847–1856. doi: 10.1093/jnci/91.21.1847. [DOI] [PubMed] [Google Scholar]
- van den Brûle F. A., Castronovo V., Ménard S., Giavazzi R., Marzola M., Belotti D., Taraboletti G. Expression of the 67 kD laminin receptor in human ovarian carcinomas as defined by a monoclonal antibody, MLuC5. Eur J Cancer. 1996 Aug;32A(9):1598–1602. doi: 10.1016/0959-8049(96)00119-0. [DOI] [PubMed] [Google Scholar]
- van der Leede B. M., van den Brink C. E., Pijnappel W. W., Sonneveld E., van der Saag P. T., van der Burg B. Autoinduction of retinoic acid metabolism to polar derivatives with decreased biological activity in retinoic acid-sensitive, but not in retinoic acid-resistant human breast cancer cells. J Biol Chem. 1997 Jul 18;272(29):17921–17928. doi: 10.1074/jbc.272.29.17921. [DOI] [PubMed] [Google Scholar]