Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jun;84(12):1681–1685. doi: 10.1054/bjoc.2001.1802

Tumour enhancement with newly developed Mn-metalloporphyrin (HOP-9P) in magnetic resonance imaging of mice

Y Takehara 1, H Sakahara 1, H Masunaga 1, S Isogai 1, N Kodaira 1, H Takeda 1, T Saga 2, S Nakajima 3, I Sakata 4
PMCID: PMC2363677  PMID: 11401324

Abstract

The purpose of the study is to evaluate the tumour enhancing characteristics and biodistribution of a newly developed metalloporphyrin derivative, HOP-9P (13, 17-bis (1-carboxypropionyl) carbamoylethyl-3, 8-bis (1-phenylpropyloxyethyl)-2,7,12,18-tetra- methyl-porphynato manganese (III)). Seven mice bearing SCC VII tumours were imaged using T1-weighted conventional spin echo magnetic resonance images before and 5 min, 2 h and 24 h after intravenous injection of 0.1 mmol/kg of HOP-9P. For the acquired images, signal intensities of the tumour, muscle and oil-phantom were measured. Then, tumor/oil and tumor/muscle signal intensity ratios were calculated. Nineteen mice were sacrificed before or after the administration of HOP-9P (at 5 min, 2 h and 24 h), and the biodistribution of manganese in the tumour, muscle, liver, blood and kidneys was measured using optical emission spectrometers and was expressed as micrograms of manganese per gram of tissue. The tumour/muscle signal intensity ratio at 24 h (3.18 ± 0.34) was significantly higher than precontrast ratio (1.77 ± 0.20) (P < 0.05). The biodistribution assessment of manganese demonstrated that HOP-9P gradually and consistently accumulated in the tumour to reach the highest concentration at 24 h (3.49 ± 1.22 μ gMn/g). It is concluded that HOP-9P is a potential tumour-specific MR contrast agent. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: animal, metalloporphyrins, manganese, contrast media, neoplasms, magnetic resonance imaging

Full Text

The Full Text of this article is available as a PDF (172.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calzavara-Pinton P. G., Szeimies R. M., Ortel B., Zane C. Photodynamic therapy with systemic administration of photosensitizers in dermatology. J Photochem Photobiol B. 1996 Nov;36(2):225–231. doi: 10.1016/s1011-1344(96)07377-0. [DOI] [PubMed] [Google Scholar]
  2. Chen C. W., Cohen J. S., Myers C. E., Sohn M. Paramagnetic metalloporphyrins as potential contrast agents in NMR imaging. FEBS Lett. 1984 Mar 12;168(1):70–74. doi: 10.1016/0014-5793(84)80208-2. [DOI] [PubMed] [Google Scholar]
  3. Dagan A., Gatt S., Cerbu-Karabat S., Mazière J. C., Mazière C., Santus R., Engelhardt E. L., Yeh K. A., Stobbe C. C., Fenning M. C. Uptake by cells and photosensitizing effectiveness of novel pheophorbide derivatives in vitro. Int J Cancer. 1995 Dec 11;63(6):831–839. doi: 10.1002/ijc.2910630614. [DOI] [PubMed] [Google Scholar]
  4. Fiel R. J., Mark E., Button T., Gilani S., Musser D. Mechanism of the localization of manganese (III) mesotetra(4-sulfonatophenyl)porphine in mice bearing L1210 tumors. Cancer Lett. 1988 May;40(1):23–32. doi: 10.1016/0304-3835(88)90258-3. [DOI] [PubMed] [Google Scholar]
  5. Hill R. A., Garrett J., Reddi S., Esterowitz T., Liaw L. H., Ryan J., Shirk J., Kenney M., Shimuzu S., Berns M. W. Photodynamic therapy (PDT) of the ciliary body with silicon naphthalocyanine (SINc) in rabbits. Lasers Surg Med. 1996;18(1):86–91. doi: 10.1002/(SICI)1096-9101(1996)18:1<86::AID-LSM11>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  6. Jain R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987 Jun 15;47(12):3039–3051. [PubMed] [Google Scholar]
  7. Kessel D., Chou T. H. Tumor-localizing components of the porphyrin preparation hematoporphyrin derivative. Cancer Res. 1983 May;43(5):1994–1999. [PubMed] [Google Scholar]
  8. Kessel D. Photodynamic therapy and neoplastic disease. Oncol Res. 1992;4(6):219–225. [PubMed] [Google Scholar]
  9. Kobayashi M., Tajiri H., Hayashi T., Kuroki M., Sakata I. Tumor-enhancement effect of a Mn3+ metalloporphyrin derivative (ATN-4T) in magnetic resonance imaging. Cancer Lett. 1999 Mar 22;137(1):83–89. doi: 10.1016/s0304-3835(98)00350-4. [DOI] [PubMed] [Google Scholar]
  10. Koenig S. H., Brown R. D., 3rd, Spiller M. The anomalous relaxivity of Mn3+ (TPPS4). Magn Reson Med. 1987 Mar;4(3):252–260. doi: 10.1002/mrm.1910040306. [DOI] [PubMed] [Google Scholar]
  11. Kostenich G., Orenstein A., Roitman L., Malik Z., Ehrenberg B. In vivo photodynamic therapy with the new near-IR absorbing water soluble photosensitizer lutetium texaphyrin and a high intensity pulsed light delivery system. J Photochem Photobiol B. 1997 May;39(1):36–42. doi: 10.1016/s1011-1344(96)00005-x. [DOI] [PubMed] [Google Scholar]
  12. Lapes M., Petera J., Jirsa M. Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4). J Photochem Photobiol B. 1996 Nov;36(2):205–207. doi: 10.1016/s1011-1344(96)07373-3. [DOI] [PubMed] [Google Scholar]
  13. Matsumura A., Shibata Y., Yamamoto T., Yoshida F., Isobe T., Nakai K., Hayakawa Y., Kiriya M., Shimojo N., Ono K. A new boronated porphyrin (STA-BX909) for neutron capture therapy: an in vitro survival assay and in vivo tissue uptake study. Cancer Lett. 1999 Jul 1;141(1-2):203–209. doi: 10.1016/s0304-3835(99)00105-6. [DOI] [PubMed] [Google Scholar]
  14. McIlroy B. W., Curnow A., Buonaccorsi G., Scott M. A., Bown S. G., MacRobert A. J. Spatial measurement of oxygen levels during photodynamic therapy using time-resolved optical spectroscopy. J Photochem Photobiol B. 1998 Apr;43(1):47–55. doi: 10.1016/s1011-1344(98)00081-5. [DOI] [PubMed] [Google Scholar]
  15. Megnin F., Faustino P. J., Lyon R. C., Lelkes P. I., Cohen J. S. Studies on the mechanism of selective retention of porphyrins and metalloporphyrins by cancer cells. Biochim Biophys Acta. 1987 Jul 6;929(2):173–181. doi: 10.1016/0167-4889(87)90173-x. [DOI] [PubMed] [Google Scholar]
  16. Miura M., Micca P. L., Fisher C. D., Heinrichs J. C., Donaldson J. A., Finkel G. C., Slatkin D. N. Synthesis of a nickel tetracarboranylphenylporphyrin for boron neutron-capture therapy: biodistribution and toxicity in tumor-bearing mice. Int J Cancer. 1996 Sep 27;68(1):114–119. doi: 10.1002/(SICI)1097-0215(19960927)68:1<114::AID-IJC20>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  17. Nakajima S., Moriyama T., Hayashi H., Sakata I., Nakae Y., Takemura T. Hemopexin as a carrier protein of tumor-localizing Ga-metalloporphyrin-ATN-2. Cancer Lett. 2000 Feb 28;149(1-2):221–226. doi: 10.1016/s0304-3835(99)00367-5. [DOI] [PubMed] [Google Scholar]
  18. Nakajima S., Sakata I., Hirano T., Takemura T. Therapeutic effect of interstitial photodynamic therapy using ATX-S10(Na) and a diode laser on radio-resistant SCCVII tumors of C3H/He mice. Anticancer Drugs. 1998 Jul;9(6):539–543. doi: 10.1097/00001813-199807000-00004. [DOI] [PubMed] [Google Scholar]
  19. Nakajima S., Takemura T., Sakata I. Tumor-localizing activity of porphyrin and its affinity to LDL, transferrin. Cancer Lett. 1995 May 25;92(1):113–118. doi: 10.1016/0304-3835(95)03762-l. [DOI] [PubMed] [Google Scholar]
  20. Niendorf A., Nägele H., Gerding D., Meyer-Pannwitt U., Gebhardt A. Increased LDL receptor mRNA expression in colon cancer is correlated with a rise in plasma cholesterol levels after curative surgery. Int J Cancer. 1995 May 16;61(4):461–464. doi: 10.1002/ijc.2910610405. [DOI] [PubMed] [Google Scholar]
  21. Oenbrink G., Jürgenlimke P., Gabel D. Accumulation of porphyrins in cells: influence of hydrophobicity aggregation and protein binding. Photochem Photobiol. 1988 Oct;48(4):451–456. doi: 10.1111/j.1751-1097.1988.tb02844.x. [DOI] [PubMed] [Google Scholar]
  22. Reyftmann J. P., Morliere P., Goldstein S., Satus R., Dubertret L., Lagrange D. Interaction of human serum low density lipoproteins with porphyrins: a spectroscopic and photochemical study. Photochem Photobiol. 1984 Dec;40(6):721–729. doi: 10.1111/j.1751-1097.1984.tb04643.x. [DOI] [PubMed] [Google Scholar]
  23. Rowinsky E. K. Novel radiation sensitizers targeting tissue hypoxia. Oncology (Williston Park) 1999 Oct;13(10 Suppl 5):61–70. [PubMed] [Google Scholar]
  24. Shibata Y., Matsumura A., Yamamoto T., Nakagawa K., Yoshii Y., Nose T., Sakata I., Nakajima S., Hayakawa Y., Ono K. Neutron capture therapy with a new boron-porphyrin compound in the rat 9L glioma model. J Exp Clin Cancer Res. 1998 Sep;17(3):285–289. [PubMed] [Google Scholar]
  25. Shopova M., Wohrle D., Stoichkova N., Milev A., Mantareva V., Muller S., Kassabov K., Georgiev K. Hydrophobic Zn(II)-naphthalocyanines as photodynamic therapy agents for Lewis lung carcinoma. J Photochem Photobiol B. 1994 Apr;23(1):35–42. doi: 10.1016/1011-1344(93)06983-a. [DOI] [PubMed] [Google Scholar]
  26. Suzuki T., Nakano K., Tomiyoshi K., Sakata I., Endo K., Yamanaka H. Contrast enhancement of PC-3 prostate cancer for magnetic resonance imaging: animal studies using tumor-localizing Mn-metalloporphyrin (THF-Mn-Asp). J Urol. 1996 Nov;156(5):1850–1852. [PubMed] [Google Scholar]
  27. Takemura T., Nakajima S., Sakata I. Tumor-localizing fluorescent diagnostic agents without phototoxicity. Photochem Photobiol. 1994 Mar;59(3):366–370. doi: 10.1111/j.1751-1097.1994.tb05049.x. [DOI] [PubMed] [Google Scholar]
  28. Takemura T., Ohta N., Nakajima S., Sakata I. The mechanism of photosensitization in photodynamic therapy: chemiluminescence caused by photosensitization of porphyrins in saline containing human serum albumin. Photochem Photobiol. 1992 Jan;55(1):137–140. doi: 10.1111/j.1751-1097.1992.tb04220.x. [DOI] [PubMed] [Google Scholar]
  29. Viala J., Vanel D., Meingan P., Lartigau E., Carde P., Renschler M. Phases IB and II multidose trial of gadolinium texaphyrin, a radiation sensitizer detectable at MR imaging: preliminary results in brain metastases. Radiology. 1999 Sep;212(3):755–759. doi: 10.1148/radiology.212.3.r99se10755. [DOI] [PubMed] [Google Scholar]
  30. Woodburn K. W., Fan Q., Kessel D., Luo Y., Young S. W. Photodynamic therapy of B16F10 murine melanoma with lutetium texaphyrin. J Invest Dermatol. 1998 May;110(5):746–751. doi: 10.1046/j.1523-1747.1998.00182.x. [DOI] [PubMed] [Google Scholar]
  31. Zhu L., Hope T. J., Hall J., Davies A., Stern M., Muller-Eberhard U., Stern R., Parslow T. G. Molecular cloning of a mammalian hyaluronidase reveals identity with hemopexin, a serum heme-binding protein. J Biol Chem. 1994 Dec 23;269(51):32092–32097. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES