Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jan;84(2):253–262. doi: 10.1054/bjoc.2000.1567

Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis

P S Moore 1, S Orlandini 1, G Zamboni 1, P Capelli 1, G Rigaud 1, M Falconi 2, C Bassi 2, N R Lemoine 3, A Scarpa 1
PMCID: PMC2363700  PMID: 11161385

Abstract

Alterations of K-ras, p53, p16 and DPC4/Smad4 characterize pancreatic ductal cancer (PDC). Reports of inactivation of these latter two genes in pancreatic endocrine tumours (PET) suggest that common molecular pathways are involved in the tumorigenesis of pancreatic exocrine and endocrine epithelia. We characterized 112 primary pancreatic tumours for alterations in p16 and DPC4 and immunohistochemical expression of DPC4. The cases included 34 PDC, 10 intraductal papillary-mucinous tumours (IPMT), 6 acinar carcinomas (PAC), 5 solid-pseudopapillary tumours (SPT), 16 ampulla of Vater cancers (AVC) and 41 PET. All tumours were also presently or previously analysed for K- ras and p53 mutations and allelic loss at 9p, 17p and 18q. Alterations in K- ras, p53, p16 and DPC4 were found in 82%, 53%, 38% and 9% of PDC, respectively and in 47%, 60%, 25% and 6% of AVC. Alterations in these genes were virtually absent in PET, PAC or SPT, while in IPMT only K-ras mutations were present (30%). Positive immunostaining confirmed the absence of DPC4 alterations in all IPMT, SPT, PAC and PET, while 47% of PDC and 38% of AVC were immunonegative. These data suggest that pancreatic exocrine and endocrine tumourigenesis involves different genetic targets and that among exocrine pancreatic neoplasms, only ductal and ampullary cancers share common molecular events. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: pancreas, carcinoma, intraductal papillary-mucinous tumour, acinar cancer, solid pseudopapillary tumour, ampulla of Vater cancer, endocrine tumour, K-ras, p16, p53, DPC4/Smad4, microsatellites, allelotyping

Full Text

The Full Text of this article is available as a PDF (307.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achille A., Baron A., Zamboni G., Di Pace C., Orlandini S., Scarpa A. Chromosome 5 allelic losses are early events in tumours of the papilla of Vater and occur at sites similar to those of gastric cancer. Br J Cancer. 1998 Dec;78(12):1653–1660. doi: 10.1038/bjc.1998.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Achille A., Biasi M. O., Zamboni G., Bogina G., Iacono C., Talamini G., Capella G., Scarpa A. Cancers of the papilla of vater: mutator phenotype is associated with good prognosis. Clin Cancer Res. 1997 Oct;3(10):1841–1847. [PubMed] [Google Scholar]
  3. Achille A., Biasi M. O., Zamboni G., Bogina G., Magalini A. R., Pederzoli P., Perucho M., Scarpa A. Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res. 1996 Aug 15;56(16):3808–3813. [PubMed] [Google Scholar]
  4. Achille A., Scupoli M. T., Magalini A. R., Zamboni G., Romanelli M. G., Orlandini S., Biasi M. O., Lemoine N. R., Accolla R. S., Scarpa A. APC gene mutations and allelic losses in sporadic ampullary tumours: evidence of genetic difference from tumours associated with familial adenomatous polyposis. Int J Cancer. 1996 Nov 4;68(3):305–312. doi: 10.1002/(SICI)1097-0215(19961104)68:3<305::AID-IJC7>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  5. Aitken J., Welch J., Duffy D., Milligan A., Green A., Martin N., Hayward N. CDKN2A variants in a population-based sample of Queensland families with melanoma. J Natl Cancer Inst. 1999 Mar 3;91(5):446–452. doi: 10.1093/jnci/91.5.446. [DOI] [PubMed] [Google Scholar]
  6. Almoguera C., Shibata D., Forrester K., Martin J., Arnheim N., Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988 May 20;53(4):549–554. doi: 10.1016/0092-8674(88)90571-5. [DOI] [PubMed] [Google Scholar]
  7. Barton C. M., Staddon S. L., Hughes C. M., Hall P. A., O'Sullivan C., Klöppel G., Theis B., Russell R. C., Neoptolemos J., Williamson R. C. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer. 1991 Dec;64(6):1076–1082. doi: 10.1038/bjc.1991.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bartsch D., Barth P., Bastian D., Ramaswamy A., Gerdes B., Chaloupka B., Deiss Y., Simon B., Schudy A. Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas. Cancer Lett. 1999 May 3;139(1):43–49. doi: 10.1016/s0304-3835(98)00380-2. [DOI] [PubMed] [Google Scholar]
  9. Bartsch D., Bastian D., Barth P., Schudy A., Nies C., Kisker O., Wagner H. J., Rothmund M. K-ras oncogene mutations indicate malignancy in cystic tumors of the pancreas. Ann Surg. 1998 Jul;228(1):79–86. doi: 10.1097/00000658-199807000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bartsch D., Hahn S. A., Danichevski K. D., Ramaswamy A., Bastian D., Galehdari H., Barth P., Schmiegel W., Simon B., Rothmund M. Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene. 1999 Apr 8;18(14):2367–2371. doi: 10.1038/sj.onc.1202585. [DOI] [PubMed] [Google Scholar]
  11. Beghelli S., Pelosi G., Zamboni G., Falconi M., Iacono C., Bordi C., Scarpa A. Pancreatic endocrine tumours: evidence for a tumour suppressor pathogenesis and for a tumour suppressor gene on chromosome 17p. J Pathol. 1998 Sep;186(1):41–50. doi: 10.1002/(SICI)1096-9896(199809)186:1<41::AID-PATH172>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  12. Caldas C., Hahn S. A., da Costa L. T., Redston M. S., Schutte M., Seymour A. B., Weinstein C. L., Hruban R. H., Yeo C. J., Kern S. E. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994 Sep;8(1):27–32. doi: 10.1038/ng0994-27. [DOI] [PubMed] [Google Scholar]
  13. Ebert M. P., Hoffmann J., Schneider-Stock R., Kasper H. U., Schulz H. U., Lippert H., Roessner A., Malfertheiner P. Analysis of K-ras gene mutations in rare pancreatic and ampullary tumours. Eur J Gastroenterol Hepatol. 1998 Dec;10(12):1025–1029. doi: 10.1097/00042737-199812000-00008. [DOI] [PubMed] [Google Scholar]
  14. Geradts J., Hruban R. H., Schutte M., Kern S. E., Maynard R. Immunohistochemical p16INK4a analysis of archival tumors with deletion, hypermethylation, or mutation of the CDKN2/MTS1 gene. A comparison of four commercial antibodies. Appl Immunohistochem Mol Morphol. 2000 Mar;8(1):71–79. doi: 10.1097/00129039-200003000-00011. [DOI] [PubMed] [Google Scholar]
  15. Hahn S. A., Bartsch D., Schroers A., Galehdari H., Becker M., Ramaswamy A., Schwarte-Waldhoff I., Maschek H., Schmiegel W. Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res. 1998 Mar 15;58(6):1124–1126. [PubMed] [Google Scholar]
  16. Hahn S. A., Schutte M., Hoque A. T., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996 Jan 19;271(5247):350–353. doi: 10.1126/science.271.5247.350. [DOI] [PubMed] [Google Scholar]
  17. Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hruban R. H., van Mansfeld A. D., Offerhaus G. J., van Weering D. H., Allison D. C., Goodman S. N., Kensler T. W., Bose K. K., Cameron J. L., Bos J. L. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993 Aug;143(2):545–554. [PMC free article] [PubMed] [Google Scholar]
  19. Huang L., Goodrow T. L., Zhang S. Y., Klein-Szanto A. J., Chang H., Ruggeri B. A. Deletion and mutation analyses of the P16/MTS-1 tumor suppressor gene in human ductal pancreatic cancer reveals a higher frequency of abnormalities in tumor-derived cell lines than in primary ductal adenocarcinomas. Cancer Res. 1996 Mar 1;56(5):1137–1141. [PubMed] [Google Scholar]
  20. Jonson T., Gorunova L., Dawiskiba S., Andrén-Sandberg A., Stenman G., ten Dijke P., Johansson B., Höglund M. Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer. 1999 Jan;24(1):62–71. doi: 10.1002/(sici)1098-2264(199901)24:1<62::aid-gcc9>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  21. Kalthoff H., Schmiegel W., Roeder C., Kasche D., Schmidt A., Lauer G., Thiele H. G., Honold G., Pantel K., Riethmüller G. p53 and K-RAS alterations in pancreatic epithelial cell lesions. Oncogene. 1993 Feb;8(2):289–298. [PubMed] [Google Scholar]
  22. Klimstra D. S., Heffess C. S., Oertel J. E., Rosai J. Acinar cell carcinoma of the pancreas. A clinicopathologic study of 28 cases. Am J Surg Pathol. 1992 Sep;16(9):815–837. doi: 10.1097/00000478-199209000-00001. [DOI] [PubMed] [Google Scholar]
  23. Kondo H., Sugano K., Fukayama N., Hosokawa K., Ohkura H., Ohtsu A., Mukai K., Yoshida S. Detection of K-ras gene mutations at codon 12 in the pancreatic juice of patients with intraductal papillary mucinous tumors of the pancreas. Cancer. 1997 Mar 1;79(5):900–905. doi: 10.1002/(sici)1097-0142(19970301)79:5<900::aid-cncr5>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  24. Lam K. Y., Lo C. Y. Role of p53 tumor suppressor gene in pancreatic endocrine tumors of Chinese patients. Am J Gastroenterol. 1998 Aug;93(8):1232–1235. doi: 10.1111/j.1572-0241.1998.401_w.x. [DOI] [PubMed] [Google Scholar]
  25. Lee W. Y., Tzeng C. C., Chen R. M., Tsao C. J., Tseng J. Y., Jin Y. T. Papillary cystic tumors of the pancreas: assessment of malignant potential by analysis of progesterone receptor, flow cytometry, and ras oncogene mutation. Anticancer Res. 1997 Jul-Aug;17(4A):2587–2591. [PubMed] [Google Scholar]
  26. Lemoine N. R., Jain S., Hughes C. M., Staddon S. L., Maillet B., Hall P. A., Klöppel G. Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology. 1992 Jan;102(1):230–236. doi: 10.1016/0016-5085(92)91805-e. [DOI] [PubMed] [Google Scholar]
  27. Moore P. S., Rigaud G., Baron A., Scarpa A. Two novel polymorphisms, c1086T>C and c1798C>T, in the MADH4/DPC4 gene. Hum Mutat. 2000 May;15(5):485–486. doi: 10.1002/(SICI)1098-1004(200005)15:5<485::AID-HUMU23>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  28. Muscarella P., Melvin W. S., Fisher W. E., Foor J., Ellison E. C., Herman J. G., Schirmer W. J., Hitchcock C. L., DeYoung B. R., Weghorst C. M. Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res. 1998 Jan 15;58(2):237–240. [PubMed] [Google Scholar]
  29. Naumann M., Savitskaia N., Eilert C., Schramm A., Kalthoff H., Schmiegel W. Frequent codeletion of p16/MTS1 and p15/MTS2 and genetic alterations in p16/MTS1 in pancreatic tumors. Gastroenterology. 1996 Apr;110(4):1215–1224. doi: 10.1053/gast.1996.v110.pm8613012. [DOI] [PubMed] [Google Scholar]
  30. Nielsen G. P., Stemmer-Rachamimov A. O., Shaw J., Roy J. E., Koh J., Louis D. N. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab Invest. 1999 Sep;79(9):1137–1143. [PubMed] [Google Scholar]
  31. Pellegata N. S., Sessa F., Renault B., Bonato M., Leone B. E., Solcia E., Ranzani G. N. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 1994 Mar 15;54(6):1556–1560. [PubMed] [Google Scholar]
  32. Redston M. S., Caldas C., Seymour A. B., Hruban R. H., da Costa L., Yeo C. J., Kern S. E. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 1994 Jun 1;54(11):3025–3033. [PubMed] [Google Scholar]
  33. Reymond A., Brent R. p16 proteins from melanoma-prone families are deficient in binding to Cdk4. Oncogene. 1995 Sep 21;11(6):1173–1178. [PubMed] [Google Scholar]
  34. Rozenblum E., Schutte M., Goggins M., Hahn S. A., Panzer S., Zahurak M., Goodman S. N., Sohn T. A., Hruban R. H., Yeo C. J. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997 May 1;57(9):1731–1734. [PubMed] [Google Scholar]
  35. Satoh K., Shimosegawa T., Moriizumi S., Koizumi M., Toyota T. K-ras mutation and p53 protein accumulation in intraductal mucin-hypersecreting neoplasms of the pancreas. Pancreas. 1996 May;12(4):362–368. doi: 10.1097/00006676-199605000-00007. [DOI] [PubMed] [Google Scholar]
  36. Scarpa A., Capelli P., Mukai K., Zamboni G., Oda T., Iacono C., Hirohashi S. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol. 1993 May;142(5):1534–1543. [PMC free article] [PubMed] [Google Scholar]
  37. Scarpa A., Capelli P., Villaneuva A., Zamboni G., Lluìs F., Accolla R., Mariuzzi G., Capellà G. Pancreatic cancer in Europe: Ki-ras gene mutation pattern shows geographical differences. Int J Cancer. 1994 Apr 15;57(2):167–171. doi: 10.1002/ijc.2910570206. [DOI] [PubMed] [Google Scholar]
  38. Scarpa A., Capelli P., Zamboni G., Oda T., Mukai K., Bonetti F., Martignoni G., Iacono C., Serio G., Hirohashi S. Neoplasia of the ampulla of Vater. Ki-ras and p53 mutations. Am J Pathol. 1993 Apr;142(4):1163–1172. [PMC free article] [PubMed] [Google Scholar]
  39. Scarpa A., Di Pace C., Talamini G., Falconi M., Lemoine N. R., Iacono C., Achille A., Baron A., Zamboni G. Cancer of the ampulla of Vater: chromosome 17p allelic loss is associated with poor prognosis. Gut. 2000 Jun;46(6):842–848. doi: 10.1136/gut.46.6.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Scarpa A., Zamboni G., Achille A., Capelli P., Bogina G., Iacono C., Serio G., Accolla R. S. ras-family gene mutations in neoplasia of the ampulla of Vater. Int J Cancer. 1994 Oct 1;59(1):39–42. doi: 10.1002/ijc.2910590109. [DOI] [PubMed] [Google Scholar]
  41. Schutte M., Hruban R. H., Geradts J., Maynard R., Hilgers W., Rabindran S. K., Moskaluk C. A., Hahn S. A., Schwarte-Waldhoff I., Schmiegel W. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997 Aug 1;57(15):3126–3130. [PubMed] [Google Scholar]
  42. Sessa F., Solcia E., Capella C., Bonato M., Scarpa A., Zamboni G., Pellegata N. S., Ranzani G. N., Rickaert F., Klöppel G. Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch. 1994;425(4):357–367. doi: 10.1007/BF00189573. [DOI] [PubMed] [Google Scholar]
  43. Sorio C., Baron A., Orlandini S., Zamboni G., Pederzoli P., Huebner K., Scarpa A. The FHIT gene is expressed in pancreatic ductular cells and is altered in pancreatic cancers. Cancer Res. 1999 Mar 15;59(6):1308–1314. [PubMed] [Google Scholar]
  44. Terhune P. G., Heffess C. S., Longnecker D. S. Only wild-type c-Ki-ras codons 12, 13, and 61 in human pancreatic acinar cell carcinomas. Mol Carcinog. 1994 Jun;10(2):110–114. doi: 10.1002/mc.2940100209. [DOI] [PubMed] [Google Scholar]
  45. Ueki T., Toyota M., Sohn T., Yeo C. J., Issa J. P., Hruban R. H., Goggins M. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000 Apr 1;60(7):1835–1839. [PubMed] [Google Scholar]
  46. Villanueva A., García C., Paules A. B., Vicente M., Megías M., Reyes G., de Villalonga P., Agell N., Lluís F., Bachs O. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene. 1998 Oct 15;17(15):1969–1978. doi: 10.1038/sj.onc.1202118. [DOI] [PubMed] [Google Scholar]
  47. Wilentz R. E., Geradts J., Maynard R., Offerhaus G. J., Kang M., Goggins M., Yeo C. J., Kern S. E., Hruban R. H. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res. 1998 Oct 15;58(20):4740–4744. [PubMed] [Google Scholar]
  48. Wilentz R. E., Su G. H., Dai J. L., Sparks A. B., Argani P., Sohn T. A., Yeo C. J., Kern S. E., Hruban R. H. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol. 2000 Jan;156(1):37–43. doi: 10.1016/S0002-9440(10)64703-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Z'graggen K., Rivera J. A., Compton C. C., Pins M., Werner J., Fernández-del Castillo C., Rattner D. W., Lewandrowski K. B., Rustgi A. K., Warshaw A. L. Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997 Oct;226(4):491–500. doi: 10.1097/00000658-199710000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zamboni G., Bonetti F., Scarpa A., Pelosi G., Doglioni C., Iannucci A., Castelli P., Balercia G., Aldovini D., Bellomi A. Expression of progesterone receptors in solid-cystic tumour of the pancreas: a clinicopathological and immunohistochemical study of ten cases. Virchows Arch A Pathol Anat Histopathol. 1993;423(6):425–431. doi: 10.1007/BF01606531. [DOI] [PubMed] [Google Scholar]
  51. Zhang S. Y., Klein-Szanto A. J., Sauter E. R., Shafarenko M., Mitsunaga S., Nobori T., Carson D. A., Ridge J. A., Goodrow T. L. Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994 Oct 1;54(19):5050–5053. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES