Abstract
Carcinogenesis results from an accumulation of several genetic alterations. Mutations in the p53 gene are frequent and occur at an early stage of lung carcinogenesis. Loss of multiple chromosomal regions is another genetic alteration frequently found in lung tumours. We have examined the association between p53 mutations, loss of heterozygosity (LOH) at frequently deleted loci in lung cancer, and tobacco exposure in 165 tumours from non-small cell lung cancer (NSCLC) patients. A highly significant association between p53 mutations and deletions on 3p, 5q, 9p, 11p and 17p was found. There was also a significant correlation between deletions at these loci. 86% of the tumours with concordant deletion in the 4 most involved loci (3p21, 5q11–13, 9p21 and 17p13) had p53 mutations as compared to only 8% of the tumours without deletions at the corresponding loci (P< 0.0001). Data were also examined in relation to smoking status of the patients and histology of the tumours. The frequency of deletions was significantly higher among smokers as compared to non-smokers. This difference was significant for the 3p21.3 (hMLH1 locus), 3p14.2 (FHIT locus), 5q11–13 (hMSH3 locus) and 9p21 (D9S157 locus). Tumours with deletions at the hMLH1 locus had higher levels of hydrophobic DNA adducts. Deletions were more common in squamous cell carcinomas than in adenocarcinomas. Covariate analysis revealed that histological type and p53 mutations were significant and independent parameters for predicting LOH status at several loci. In the pathogenesis of NSCLC exposure to tobacco carcinogens in addition to clonal selection may be the driving force in these alterations. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: non-small cell lung cancer, LOH, p53 mutations, smoking, DNA-adducts
Full Text
The Full Text of this article is available as a PDF (99.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertoni M., Daub D. M., Arden K. C., Viars C. S., Powell C., Van Meir E. G. Genetic instability leads to loss of both p53 alleles in a human glioblastoma. Oncogene. 1998 Jan 22;16(3):321–326. doi: 10.1038/sj.onc.1201544. [DOI] [PubMed] [Google Scholar]
- Benachenhou N., Guiral S., Gorska-Flipot I., Labuda D., Sinnett D. Frequent loss of heterozygosity at the DNA mismatch-repair loci hMLH1 and hMSH3 in sporadic breast cancer. Br J Cancer. 1999 Mar;79(7-8):1012–1017. doi: 10.1038/sj.bjc.6690162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benachenhou N., Guiral S., Gorska-Flipot I., Labuda D., Sinnett D. High resolution deletion mapping reveals frequent allelic losses at the DNA mismatch repair loci hMLH1 and hMSH3 in non-small cell lung cancer. Int J Cancer. 1998 Jul 17;77(2):173–180. doi: 10.1002/(sici)1097-0215(19980717)77:2<173::aid-ijc1>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Bennett W. P., Colby T. V., Travis W. D., Borkowski A., Jones R. T., Lane D. P., Metcalf R. A., Samet J. M., Takeshima Y., Gu J. R. p53 protein accumulates frequently in early bronchial neoplasia. Cancer Res. 1993 Oct 15;53(20):4817–4822. [PubMed] [Google Scholar]
- Bennett W. P. p53 alterations in progenitor lesions of the bronchus, esophagus, oral cavity, and colon. Cancer Detect Prev. 1995;19(6):503–511. [PubMed] [Google Scholar]
- Buchhop S., Gibson M. K., Wang X. W., Wagner P., Stürzbecher H. W., Harris C. C. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res. 1997 Oct 1;25(19):3868–3874. doi: 10.1093/nar/25.19.3868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke L., Khan M. A., Freedman A. N., Gemma A., Rusin M., Guinee D. G., Bennett W. P., Caporaso N. E., Fleming M. V., Travis W. D. Allelic deletion analysis of the FHIT gene predicts poor survival in non-small cell lung cancer. Cancer Res. 1998 Jun 15;58(12):2533–2536. [PubMed] [Google Scholar]
- Caligo M. A., Ghimenti C., Marchetti A., Lonobile A., Buttitta F., Pellegrini S., Bevilacqua G. Microsatellite alterations and p53, TGFbetaRII, IGFIIR and BAX mutations in sporadic non-small-cell lung cancer. Int J Cancer. 1998 Nov 23;78(5):606–609. doi: 10.1002/(sici)1097-0215(19981123)78:5<606::aid-ijc13>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
- Canzian F., Salovaara R., Hemminki A., Kristo P., Chadwick R. B., Aaltonen L. A., de la Chapelle A. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 1996 Jul 15;56(14):3331–3337. [PubMed] [Google Scholar]
- Chevillard S., Radicella J. P., Levalois C., Lebeau J., Poupon M. F., Oudard S., Dutrillaux B., Boiteux S. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene. 1998 Jun 11;16(23):3083–3086. doi: 10.1038/sj.onc.1202096. [DOI] [PubMed] [Google Scholar]
- Davis T. W., Wilson-Van Patten C., Meyers M., Kunugi K. A., Cuthill S., Reznikoff C., Garces C., Boland C. R., Kinsella T. J., Fishel R. Defective expression of the DNA mismatch repair protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation. Cancer Res. 1998 Feb 15;58(4):767–778. [PubMed] [Google Scholar]
- Denissenko M. F., Pao A., Tang M., Pfeifer G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996 Oct 18;274(5286):430–432. doi: 10.1126/science.274.5286.430. [DOI] [PubMed] [Google Scholar]
- Eshleman J. R., Markowitz S. D. Mismatch repair defects in human carcinogenesis. Hum Mol Genet. 1996;5(Spec No):1489–1494. doi: 10.1093/hmg/5.supplement_1.1489. [DOI] [PubMed] [Google Scholar]
- Gazdar A. F. The molecular and cellular basis of human lung cancer. Anticancer Res. 1994 Jan-Feb;14(1B):261–267. [PubMed] [Google Scholar]
- Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
- Gupta P. K., Sahota A., Boyadjiev S. A., Bye S., Shao C., O'Neill J. P., Hunter T. C., Albertini R. J., Stambrook P. J., Tischfield J. A. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination. Cancer Res. 1997 Mar 15;57(6):1188–1193. [PubMed] [Google Scholar]
- Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992 Nov 13;71(4):543–546. doi: 10.1016/0092-8674(92)90586-2. [DOI] [PubMed] [Google Scholar]
- Hollstein M., Rice K., Greenblatt M. S., Soussi T., Fuchs R., Sørlie T., Hovig E., Smith-Sørensen B., Montesano R., Harris C. C. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994 Sep;22(17):3551–3555. [PMC free article] [PubMed] [Google Scholar]
- Horio Y., Takahashi T., Kuroishi T., Hibi K., Suyama M., Niimi T., Shimokata K., Yamakawa K., Nakamura Y., Ueda R. Prognostic significance of p53 mutations and 3p deletions in primary resected non-small cell lung cancer. Cancer Res. 1993 Jan 1;53(1):1–4. [PubMed] [Google Scholar]
- Kohno H., Hiroshima K., Toyozaki T., Fujisawa T., Ohwada H. p53 mutation and allelic loss of chromosome 3p, 9p of preneoplastic lesions in patients with nonsmall cell lung carcinoma. Cancer. 1999 Jan 15;85(2):341–347. [PubMed] [Google Scholar]
- Kohno T., Yokota J. How many tumor suppressor genes are involved in human lung carcinogenesis? Carcinogenesis. 1999 Aug;20(8):1403–1410. doi: 10.1093/carcin/20.8.1403. [DOI] [PubMed] [Google Scholar]
- Kure E. H., Ryberg D., Hewer A., Phillips D. H., Skaug V., Baera R., Haugen A. p53 mutations in lung tumours: relationship to gender and lung DNA adduct levels. Carcinogenesis. 1996 Oct;17(10):2201–2205. doi: 10.1093/carcin/17.10.2201. [DOI] [PubMed] [Google Scholar]
- Lengauer C., Kinzler K. W., Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997 Apr 10;386(6625):623–627. doi: 10.1038/386623a0. [DOI] [PubMed] [Google Scholar]
- Lindstedt B. A., Ryberg D., Zienolddiny S., Khan H., Haugen A. Hras1 VNTR alleles as susceptibility markers for lung cancer: relationship to microsatellite instability in tumors. Anticancer Res. 1999 Nov-Dec;19(6C):5523–5527. [PubMed] [Google Scholar]
- Livingstone L. R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992 Sep 18;70(6):923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
- Marchetti A., Pellegrini S., Sozzi G., Bertacca G., Gaeta P., Buttitta F., Carnicelli V., Griseri P., Chella A., Angeletti C. A. Genetic analysis of lung tumours of non-smoking subjects: p53 gene mutations are constantly associated with loss of heterozygosity at the FHIT locus. Br J Cancer. 1998 Jul;78(1):73–78. doi: 10.1038/bjc.1998.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mekeel K. L., Tang W., Kachnic L. A., Luo C. M., DeFrank J. S., Powell S. N. Inactivation of p53 results in high rates of homologous recombination. Oncogene. 1997 Apr 17;14(15):1847–1857. doi: 10.1038/sj.onc.1201143. [DOI] [PubMed] [Google Scholar]
- Mellon I., Rajpal D. K., Koi M., Boland C. R., Champe G. N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science. 1996 Apr 26;272(5261):557–560. doi: 10.1126/science.272.5261.557. [DOI] [PubMed] [Google Scholar]
- Meyers M., Theodosiou M., Acharya S., Odegaard E., Wilson T., Lewis J. E., Davis T. W., Wilson-Van Patten C., Fishel R., Boothman D. A. Cell cycle regulation of the human DNA mismatch repair genes hMSH2, hMLH1, and hPMS2. Cancer Res. 1997 Jan 15;57(2):206–208. [PubMed] [Google Scholar]
- Mitsudomi T., Oyama T., Nishida K., Ogami A., Osaki T., Sugio K., Yasumoto K., Sugimachi K., Gazdar A. F. Loss of heterozygosity at 3p in non-small cell lung cancer and its prognostic implication. Clin Cancer Res. 1996 Jul;2(7):1185–1189. [PubMed] [Google Scholar]
- Mollerup S., Ryberg D., Hewer A., Phillips D. H., Haugen A. Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res. 1999 Jul 15;59(14):3317–3320. [PubMed] [Google Scholar]
- Nelson H. H., Wiencke J. K., Gunn L., Wain J. C., Christiani D. C., Kelsey K. T. Chromosome 3p14 alterations in lung cancer: evidence that FHIT exon deletion is a target of tobacco carcinogens and asbestos. Cancer Res. 1998 May 1;58(9):1804–1807. [PubMed] [Google Scholar]
- Pellegrini S., Bertacca G., Buttitta F., Bevilacqua G., Marchetti A. Lung tumours from non-smoking subjects: A p53-related genetic instability in a subset of cases. Int J Mol Med. 1999 Oct;4(4):419–424. doi: 10.3892/ijmm.4.4.419. [DOI] [PubMed] [Google Scholar]
- Ryberg D., Hewer A., Phillips D. H., Haugen A. Different susceptibility to smoking-induced DNA damage among male and female lung cancer patients. Cancer Res. 1994 Nov 15;54(22):5801–5803. [PubMed] [Google Scholar]
- Ryberg D., Kure E., Lystad S., Skaug V., Stangeland L., Mercy I., Børresen A. L., Haugen A. p53 mutations in lung tumors: relationship to putative susceptibility markers for cancer. Cancer Res. 1994 Mar 15;54(6):1551–1555. [PubMed] [Google Scholar]
- Sato S., Nakamura Y., Tsuchiya E. Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res. 1994 Nov 1;54(21):5652–5655. [PubMed] [Google Scholar]
- Schreiber G., Fong K. M., Peterson B., Johnson B. E., O'Briant K. C., Bepler G. Smoking, gender, and survival association with allele loss for the LOH11B lung cancer region on chromosome 11. Cancer Epidemiol Biomarkers Prev. 1997 May;6(5):315–319. [PubMed] [Google Scholar]
- Skaug V., Ryberg D., Kure E. H., Arab M. O., Stangeland L., Myking A. O., Haugen A. p53 mutations in defined structural and functional domains are related to poor clinical outcome in non-small cell lung cancer patients. Clin Cancer Res. 2000 Mar;6(3):1031–1037. [PubMed] [Google Scholar]
- Sozzi G., Sard L., De Gregorio L., Marchetti A., Musso K., Buttitta F., Tornielli S., Pellegrini S., Veronese M. L., Manenti G. Association between cigarette smoking and FHIT gene alterations in lung cancer. Cancer Res. 1997 Jun 1;57(11):2121–2123. [PubMed] [Google Scholar]
- Takagi Y., Osada H., Kuroishi T., Mitsudomi T., Kondo M., Niimi T., Saji S., Gazdar A. F., Takahashi T., Minna J. D. p53 mutations in non-small-cell lung cancers occurring in individuals without a past history of active smoking. Br J Cancer. 1998 May;77(10):1568–1572. doi: 10.1038/bjc.1998.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd S., Franklin W. A., Varella-Garcia M., Kennedy T., Hilliker C. E., Jr, Hahner L., Anderson M., Wiest J. S., Drabkin H. A., Gemmill R. M. Homozygous deletions of human chromosome 3p in lung tumors. Cancer Res. 1997 Apr 1;57(7):1344–1352. [PubMed] [Google Scholar]
- Tomizawa Y., Nakajima T., Kohno T., Saito R., Yamaguchi N., Yokota J. Clinicopathological significance of Fhit protein expression in stage I non-small cell lung carcinoma. Cancer Res. 1998 Dec 1;58(23):5478–5483. [PubMed] [Google Scholar]
- Walker D. R., Bond J. P., Tarone R. E., Harris C. C., Makalowski W., Boguski M. S., Greenblatt M. S. Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features. Oncogene. 1999 Jan 7;18(1):211–218. doi: 10.1038/sj.onc.1202298. [DOI] [PubMed] [Google Scholar]
- Wei Q., Cheng L., Hong W. K., Spitz M. R. Reduced DNA repair capacity in lung cancer patients. Cancer Res. 1996 Sep 15;56(18):4103–4107. [PubMed] [Google Scholar]
- Wei Q., Eicher S. A., Guan Y., Cheng L., Xu J., Young L. N., Saunders K. C., Jiang H., Hong W. K., Spitz M. R. Reduced expression of hMLH1 and hGTBP/hMSH6: a risk factor for head and neck cancer. Cancer Epidemiol Biomarkers Prev. 1998 Apr;7(4):309–314. [PubMed] [Google Scholar]
- Wei Q., Spitz M. R. The role of DNA repair capacity in susceptibility to lung cancer: a review. Cancer Metastasis Rev. 1997 Sep-Dec;16(3-4):295–307. doi: 10.1023/a:1005852211430. [DOI] [PubMed] [Google Scholar]
- Wistuba I. I., Behrens C., Milchgrub S., Bryant D., Hung J., Minna J. D., Gazdar A. F. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene. 1999 Jan 21;18(3):643–650. doi: 10.1038/sj.onc.1202349. [DOI] [PubMed] [Google Scholar]
- Wistuba I. I., Montellano F. D., Milchgrub S., Virmani A. K., Behrens C., Chen H., Ahmadian M., Nowak J. A., Muller C., Minna J. D. Deletions of chromosome 3p are frequent and early events in the pathogenesis of uterine cervical carcinoma. Cancer Res. 1997 Aug 1;57(15):3154–3158. [PubMed] [Google Scholar]
- Wu X., Zhao Y., Honn S. E., Tomlinson G. E., Minna J. D., Hong W. K., Spitz M. R. Benzo[a]pyrene diol epoxide-induced 3p21.3 aberrations and genetic predisposition to lung cancer. Cancer Res. 1998 Apr 15;58(8):1605–1608. [PubMed] [Google Scholar]
- Yin Y., Tainsky M. A., Bischoff F. Z., Strong L. C., Wahl G. M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 1992 Sep 18;70(6):937–948. doi: 10.1016/0092-8674(92)90244-7. [DOI] [PubMed] [Google Scholar]
- de Wind N., Dekker M., Berns A., Radman M., te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 1995 Jul 28;82(2):321–330. doi: 10.1016/0092-8674(95)90319-4. [DOI] [PubMed] [Google Scholar]
