Abstract
Chromosomal copy number changes were investigated in 16 prostate carcinomas, 12 prostatic intraepithelial neoplasias (PIN; 4 low-grade and 8 high-grade) adjacent to the invasive tumour areas, and 5 regional lymph node metastases. For this purpose, comparative genomic hybridization (CGH) was performed and a copy number karyotype for each histomorphological entity was created. CGH on microdissected cells from non-neoplastic glands was carried out on 3 different cases to demonstrate the reliability of the overall procedure. None of the non-neoplastic tissue samples revealed chromosome copy number changes. In PIN areas, chromosomal imbalances were detected on chromosomes 7, 8q, Xq (gains), and on 4q, 5q, 8p, 13q and 18q (losses). In the primary tumours, recurrent (at least 25% of cases) gains on chromosomes 12q and 15q, and losses on 2q, 4q, 5q, Xq, 13q and 18q became apparent. Losses on 8p and 6q as well as gains on 8q and of chromosome 7 were also detected at lower frequencies than previously reported. The pooled CGH data from the primary carcinomas revealed a novel region of chromosomal loss on 4q which is also frequently affected in other tumour entities like oesophageal adenocarcinomas and is supposed to harbour a new tumour suppressor gene. Gains on chromosome 9q and of chromosome 16 and loss on chromosome 13q were observed as common aberrations in metastases and primary tumours. These CGH results indicate an accumulation of chromosomal imbalances during the PIN–carcinoma–metastasis sequence and an early origin of tumour-specific aberrations in PIN areas. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: prostate carcinoma, prostatic intraepithelial neoplasia, tumour progression, comparative genomic hybridization
Full Text
The Full Text of this article is available as a PDF (178.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alers J. C., Krijtenburg P. J., Vissers K. J., Bosman F. T., van der Kwast T. H., van Dekken H. Interphase cytogenetics of prostatic adenocarcinoma and precursor lesions: analysis of 25 radical prostatectomies and 17 adjacent prostatic intraepithelial neoplasias. Genes Chromosomes Cancer. 1995 Apr;12(4):241–250. doi: 10.1002/gcc.2870120402. [DOI] [PubMed] [Google Scholar]
- Aubele M. M., Cummings M. C., Mattis A. E., Zitzelsberger H. F., Walch A. K., Kremer M., Höfler H., Werner M. Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn Mol Pathol. 2000 Mar;9(1):14–19. doi: 10.1097/00019606-200003000-00003. [DOI] [PubMed] [Google Scholar]
- Aubele M., Mattis A., Zitzelsberger H., Walch A., Kremer M., Welzl G., Höfler H., Werner M. Extensive ductal carcinoma In situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int J Cancer. 2000 Jan 1;85(1):82–86. doi: 10.1002/(sici)1097-0215(20000101)85:1<82::aid-ijc15>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Aubele M., Zitzelsberger H., Szücs S., Werner M., Braselmann H., Hutzler P., Rodenacker K., Lehmann L., Minkus G., Höfler H. Comparative FISH analysis of numerical chromosome 7 abnormalities in 5-micron and 15-micron paraffin-embedded tissue sections from prostatic carcinoma. Histochem Cell Biol. 1997 Feb;107(2):121–126. doi: 10.1007/s004180050096. [DOI] [PubMed] [Google Scholar]
- Bonkhoff H., Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate. 1996 Feb;28(2):98–106. doi: 10.1002/(SICI)1097-0045(199602)28:2<98::AID-PROS4>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Bostwick D. G., Brawer M. K. Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer. 1987 Feb 15;59(4):788–794. doi: 10.1002/1097-0142(19870215)59:4<788::aid-cncr2820590421>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Bova G. S., Isaacs W. B. Review of allelic loss and gain in prostate cancer. World J Urol. 1996;14(5):338–346. doi: 10.1007/BF00184607. [DOI] [PubMed] [Google Scholar]
- Brothman A. R., Watson M. J., Zhu X. L., Williams B. J., Rohr L. R. Evaluation of 20 archival prostate tumor specimens by fluorescence in situ hybridization (FISH). Cancer Genet Cytogenet. 1994 Jul 1;75(1):40–44. doi: 10.1016/0165-4608(94)90213-5. [DOI] [PubMed] [Google Scholar]
- Cher M. L., Bova G. S., Moore D. H., Small E. J., Carroll P. R., Pin S. S., Epstein J. I., Isaacs W. B., Jensen R. H. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 1996 Jul 1;56(13):3091–3102. [PubMed] [Google Scholar]
- Deubler D. A., Williams B. J., Zhu X. L., Steele M. R., Rohr L. R., Jensen J. C., Stephenson R. A., Changus J. E., Miller G. J., Becich M. J. Allelic loss detected on chromosomes 8, 10, and 17 by fluorescence in situ hybridization using single-copy P1 probes on isolated nuclei from paraffin-embedded prostate tumors. Am J Pathol. 1997 Mar;150(3):841–850. [PMC free article] [PubMed] [Google Scholar]
- Gleason D. F., Mellinger G. T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974 Jan;111(1):58–64. doi: 10.1016/s0022-5347(17)59889-4. [DOI] [PubMed] [Google Scholar]
- Hammoud Z. T., Kaleem Z., Cooper J. D., Sundaresan R. S., Patterson G. A., Goodfellow P. J. Allelotype analysis of esophageal adenocarcinomas: evidence for the involvement of sequences on the long arm of chromosome 4. Cancer Res. 1996 Oct 1;56(19):4499–4502. [PubMed] [Google Scholar]
- Heselmeyer K., Schröck E., du Manoir S., Blegen H., Shah K., Steinbeck R., Auer G., Ried T. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):479–484. doi: 10.1073/pnas.93.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopman A. H., Ramaekers F. C., Raap A. K., Beck J. L., Devilee P., van der Ploeg M., Vooijs G. P. In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry. 1988;89(4):307–316. doi: 10.1007/BF00500631. [DOI] [PubMed] [Google Scholar]
- Huang S. F., Xiao S., Renshaw A. A., Loughlin K. R., Hudson T. J., Fletcher J. A. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer. Am J Pathol. 1996 Nov;149(5):1565–1573. [PMC free article] [PubMed] [Google Scholar]
- Jenkins R. B., Qian J., Lieber M. M., Bostwick D. G. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 1997 Feb 1;57(3):524–531. [PubMed] [Google Scholar]
- Jiang F., Moch H., Richter J., Egenter C., Gasser T., Bubendorf L., Gschwind R., Sauter G., Mihatsch M. J. Comparative genomic hybridization reveals frequent chromosome 13q and 4q losses in renal carcinomas with sarcomatoid transformation. J Pathol. 1998 Aug;185(4):382–388. doi: 10.1002/(SICI)1096-9896(199808)185:4<382::AID-PATH124>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Joos S., Bergerheim U. S., Pan Y., Matsuyama H., Bentz M., du Manoir S., Lichter P. Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosomes Cancer. 1995 Dec;14(4):267–276. doi: 10.1002/gcc.2870140405. [DOI] [PubMed] [Google Scholar]
- Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
- Kallioniemi O. P., Kallioniemi A., Piper J., Isola J., Waldman F. M., Gray J. W., Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994 Aug;10(4):231–243. doi: 10.1002/gcc.2870100403. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Godfrey T., Jensen R. H. Whole genome amplification and molecular genetic analysis of DNA from paraffin-embedded prostate adenocarcinoma tumor tissue. J Urol. 1999 Oct;162(4):1512–1518. [PubMed] [Google Scholar]
- Kuukasjärvi T., Tanner M., Pennanen S., Karhu R., Visakorpi T., Isola J. Optimizing DOP-PCR for universal amplification of small DNA samples in comparative genomic hybridization. Genes Chromosomes Cancer. 1997 Feb;18(2):94–101. [PubMed] [Google Scholar]
- Macintosh C. A., Stower M., Reid N., Maitland N. J. Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res. 1998 Jan 1;58(1):23–28. [PubMed] [Google Scholar]
- Macoska J. A., Trybus T. M., Sakr W. A., Wolf M. C., Benson P. D., Powell I. J., Pontes J. E. Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res. 1994 Jul 15;54(14):3824–3830. [PubMed] [Google Scholar]
- Matsuyama H., Pan Y., Skoog L., Tribukait B., Naito K., Ekman P., Lichter P., Bergerheim U. S. Deletion mapping of chromosome 8p in prostate cancer by fluorescence in situ hybridization. Oncogene. 1994 Oct;9(10):3071–3076. [PubMed] [Google Scholar]
- Nupponen N. N., Kakkola L., Koivisto P., Visakorpi T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol. 1998 Jul;153(1):141–148. doi: 10.1016/S0002-9440(10)65554-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen I., Langreck H., Wolf G., Schwendel A., Psille R., Vogt P., Reichel M. B., Ried T., Dietel M. Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer. 1997;75(1):79–86. doi: 10.1038/bjc.1997.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piao Z., Park C., Park J. H., Kim H. Deletion mapping of chromosome 4q in hepatocellular carcinoma. Int J Cancer. 1998 Aug 21;79(4):356–360. doi: 10.1002/(sici)1097-0215(19980821)79:4<356::aid-ijc8>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Qian J., Bostwick D. G., Takahashi S., Borell T. J., Herath J. F., Lieber M. M., Jenkins R. B. Chromosomal anomalies in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Cancer Res. 1995 Nov 15;55(22):5408–5414. [PubMed] [Google Scholar]
- Saric T., Brkanac Z., Troyer D. A., Padalecki S. S., Sarosdy M., Williams K., Abadesco L., Leach R. J., O'Connell P. Genetic pattern of prostate cancer progression. Int J Cancer. 1999 Apr 12;81(2):219–224. doi: 10.1002/(sici)1097-0215(19990412)81:2<219::aid-ijc9>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Sattler H. P., Rohde V., Bonkhoff H., Zwergel T., Wullich B. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate. 1999 May;39(2):79–86. doi: 10.1002/(sici)1097-0045(19990501)39:2<79::aid-pros1>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Simon R., Bürger H., Brinkschmidt C., Böcker W., Hertle L., Terpe H. J. Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J Pathol. 1998 Aug;185(4):345–351. doi: 10.1002/(SICI)1096-9896(199808)185:4<345::AID-PATH109>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Solinas-Toldo S., Wallrapp C., Müller-Pillasch F., Bentz M., Gress T., Lichter P. Mapping of chromosomal imbalances in pancreatic carcinoma by comparative genomic hybridization. Cancer Res. 1996 Aug 15;56(16):3803–3807. [PubMed] [Google Scholar]
- Visakorpi T., Kallioniemi A. H., Syvänen A. C., Hyytinen E. R., Karhu R., Tammela T., Isola J. J., Kallioniemi O. P. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 1995 Jan 15;55(2):342–347. [PubMed] [Google Scholar]
- Walch A. K., Zitzelsberger H. F., Bruch J., Keller G., Angermeier D., Aubele M. M., Mueller J., Stein H., Braselmann H., Siewert J. R. Chromosomal imbalances in Barrett's adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. Am J Pathol. 2000 Feb;156(2):555–566. doi: 10.1016/S0002-9440(10)64760-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber R. G., Scheer M., Born I. A., Joos S., Cobbers J. M., Hofele C., Reifenberger G., Zöller J. E., Lichter P. Recurrent chromosomal imbalances detected in biopsy material from oral premalignant and malignant lesions by combined tissue microdissection, universal DNA amplification, and comparative genomic hybridization. Am J Pathol. 1998 Jul;153(1):295–303. doi: 10.1016/S0002-9440(10)65571-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zitzelsberger H., Kulka U., Lehmann L., Walch A., Smida J., Aubele M., Lörch T., Höfler H., Bauchinger M., Werner M. Genetic heterogeneity in a prostatic carcinoma and associated prostatic intraepithelial neoplasia as demonstrated by combined use of laser-microdissection, degenerate oligonucleotide primed PCR and comparative genomic hybridization. Virchows Arch. 1998 Oct;433(4):297–304. doi: 10.1007/s004280050252. [DOI] [PubMed] [Google Scholar]
- du Manoir S., Speicher M. R., Joos S., Schröck E., Popp S., Döhner H., Kovacs G., Robert-Nicoud M., Lichter P., Cremer T. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993 Feb;90(6):590–610. doi: 10.1007/BF00202476. [DOI] [PubMed] [Google Scholar]
