Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Feb;84(3):367–373. doi: 10.1054/bjoc.2000.1621

Comparison of 99mTc-sestamibi and doxorubicin to monitor inhibition of P-glycoprotein function

T Muzzammil 1,3, M J Moore 1,3,4, D Hedley 2,3,4, J R Ballinger 1,3,5
PMCID: PMC2363739  PMID: 11161402

Abstract

P-glycoprotein (Pgp) overexpression is a well-recognized factor in resistance to chemotherapy. Doxorubicin flow cytometry is used to monitor Pgp function in haematological specimens and biopsies from other cancers, and radionuclide imaging with sestamibi has recently shown promise for non-invasive monitoring. In the present study the two methods were directly compared in single-cell suspensions of three variants of the human breast carcinoma cell line MCF7: sensitive MCF7/WT, doxorubicin-selected MCF7/AdrR, and MDR1 -gene-transfected MCF7/BC19 cells with doxorubicin resistance factors of 1, 192, and 14, respectively. Accumulation of sestamibi and mean fluorescence of doxorubicin (5.5 μM) were assessed over 60 min in the presence and absence of Pgp modulators GG918 (0.01 to 0.2 μM) and PSC833 (0.05 to 2.0 μM). Accumulation curves for sestamibi and doxorubicin differed among the cell variants under control conditions, with sestamibi showing a significantly greater difference between WT and resistant cells than doxorubicin. Both GG918 and PSC833 reversed uptake deficits to WT levels for sestamibi in MCF7/BC19 cells and doxorubicin in MCF7/BC19 and MCF7/AdrR cells, but failed to show the same effect for sestamibi in MCF7/AdrR cells (∼30% of MCF7/WT level). Thus, both methods clearly distinguished sensitive from resistant MCF7 variants, with the radionuclide method showing greater sensitivity. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: P-glycoprotein, radionuclide imaging, 99mTc-sestamibi, flow cytometry, doxorubicin, MCF7 human breast carcinomaell line

Full Text

The Full Text of this article is available as a PDF (158.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballinger J. R., Bannerman J., Boxen I., Firby P., Hartman N. G., Moore M. J. Technetium-99m-tetrofosmin as a substrate for P-glycoprotein: in vitro studies in multidrug-resistant breast tumor cells. J Nucl Med. 1996 Sep;37(9):1578–1582. [PubMed] [Google Scholar]
  2. Ballinger J. R., Hua H. A., Berry B. W., Firby P., Boxen I. 99Tcm-sestamibi as an agent for imaging P-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun. 1995 Apr;16(4):253–257. doi: 10.1097/00006231-199504000-00156. [DOI] [PubMed] [Google Scholar]
  3. Ballinger J. R., Muzzammil T., Moore M. J. Technetium-99m-furifosmin as an agent for functional imaging of multidrug resistance in tumors. J Nucl Med. 1997 Dec;38(12):1915–1919. [PubMed] [Google Scholar]
  4. Batist G., Tulpule A., Sinha B. K., Katki A. G., Myers C. E., Cowan K. H. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986 Nov 25;261(33):15544–15549. [PubMed] [Google Scholar]
  5. Belli J. A., Zhang Y., Fritz P. Transfer of adriamycin resistance by fusion of Mr 170,000 P-glycoprotein to the plasma membrane of sensitive cells. Cancer Res. 1990 Apr 1;50(7):2191–2197. [PubMed] [Google Scholar]
  6. Benderra Z., Trussardi A., Morjani H., Villa A. M., Doglia S. M., Manfait M. Regulation of cellular glutathione modulates nuclear accumulation of daunorubicin in human MCF7 cells overexpressing multidrug resistance associated protein. Eur J Cancer. 2000 Feb;36(3):428–434. doi: 10.1016/s0959-8049(99)00288-9. [DOI] [PubMed] [Google Scholar]
  7. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  8. Breuninger L. M., Paul S., Gaughan K., Miki T., Chan A., Aaronson S. A., Kruh G. D. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995 Nov 15;55(22):5342–5347. [PubMed] [Google Scholar]
  9. Broxterman H. J., Sonneveld P., Feller N., Ossenkoppele G. J., Währer D. C., Eekman C. A., Schoester M., Lankelma J., Pinedo H. M., Löwenberg B. Quality control of multidrug resistance assays in adult acute leukemia: correlation between assays for P-glycoprotein expression and activity. Blood. 1996 Jun 1;87(11):4809–4816. [PubMed] [Google Scholar]
  10. Cayre A., Moins N., Finat-Duclos F., Maublant J., Verrelle P. Comparative 99mTc-sestamibi and 3H-daunomycin uptake in human carcinoma cells: relation to the MDR phenotype and effects of reversing agents. J Nucl Med. 1999 Apr;40(4):672–676. [PubMed] [Google Scholar]
  11. Chan H. S., Bradley G., Thorner P., Haddad G., Gallie B. L., Ling V. A sensitive method for immunocytochemical detection of P-glycoprotein in multidrug-resistant human ovarian carcinoma cell lines. Lab Invest. 1988 Dec;59(6):870–875. [PubMed] [Google Scholar]
  12. Chiu M. L., Kronauge J. F., Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med. 1990 Oct;31(10):1646–1653. [PubMed] [Google Scholar]
  13. Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4;258(5088):1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  14. Crankshaw C. L., Marmion M., Luker G. D., Rao V., Dahlheimer J., Burleigh B. D., Webb E., Deutsch K. F., Piwnica-Worms D. Novel technetium (III)-Q complexes for functional imaging of multidrug resistance (MDR1) P-glycoprotein. J Nucl Med. 1998 Jan;39(1):77–86. [PubMed] [Google Scholar]
  15. Dantzig A. H., Shepard R. L., Cao J., Law K. L., Ehlhardt W. J., Baughman T. M., Bumol T. F., Starling J. J. Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res. 1996 Sep 15;56(18):4171–4179. [PubMed] [Google Scholar]
  16. Davis S., Weiss M. J., Wong J. R., Lampidis T. J., Chen L. B. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem. 1985 Nov 5;260(25):13844–13850. [PubMed] [Google Scholar]
  17. Del Vecchio S., Ciarmiello A., Salvatore M. Clinical imaging of multidrug resistance in cancer. Q J Nucl Med. 1999 Jun;43(2):125–131. [PubMed] [Google Scholar]
  18. Fairchild C. R., Moscow J. A., O'Brien E. E., Cowan K. H. Multidrug resistance in cells transfected with human genes encoding a variant P-glycoprotein and glutathione S-transferase-pi. Mol Pharmacol. 1990 Jun;37(6):801–809. [PubMed] [Google Scholar]
  19. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  20. Hendrikse N. H., Franssen E. J., van der Graaf W. T., Meijer C., Piers D. A., Vaalburg W., de Vries E. G. 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer. 1998;77(3):353–358. doi: 10.1038/bjc.1998.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hendrikse N. H., Franssen E. J., van der Graaf W. T., Vaalburg W., de Vries E. G. Visualization of multidrug resistance in vivo. Eur J Nucl Med. 1999 Mar;26(3):283–293. doi: 10.1007/s002590050390. [DOI] [PubMed] [Google Scholar]
  22. Hyafil F., Vergely C., Du Vignaud P., Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 1993 Oct 1;53(19):4595–4602. [PubMed] [Google Scholar]
  23. Kessel D., Beck W. T., Kukuruga D., Schulz V. Characterization of multidrug resistance by fluorescent dyes. Cancer Res. 1991 Sep 1;51(17):4665–4670. [PubMed] [Google Scholar]
  24. Kuwazuru Y., Yoshimura A., Hanada S., Utsunomiya A., Makino T., Ishibashi K., Kodama M., Iwahashi M., Arima T., Akiyama S. Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer. 1990 Sep 1;66(5):868–873. doi: 10.1002/1097-0142(19900901)66:5<868::aid-cncr2820660510>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  25. Marbeuf-Gueye C., Broxterman H. J., Dubru F., Priebe W., Garnier-Suillerot A. Kinetics of anthracycline efflux from multidrug resistance protein-expressing cancer cells compared with P-glycoprotein-expressing cancer cells. Mol Pharmacol. 1998 Jan;53(1):141–147. doi: 10.1124/mol.53.1.141. [DOI] [PubMed] [Google Scholar]
  26. Muzzammil T., Ballinger J. R., Moore M. J. 99Tcm-sestamibi imaging of inhibition of the multidrug resistance transporter in a mouse xenograft model of human breast cancer. Nucl Med Commun. 1999 Feb;20(2):115–122. doi: 10.1097/00006231-199902000-00002. [DOI] [PubMed] [Google Scholar]
  27. Piwnica-Worms D., Chiu M. L., Budding M., Kronauge J. F., Kramer R. A., Croop J. M. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993 Mar 1;53(5):977–984. [PubMed] [Google Scholar]
  28. Schneider E., Horton J. K., Yang C. H., Nakagawa M., Cowan K. H. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res. 1994 Jan 1;54(1):152–158. [PubMed] [Google Scholar]
  29. Schuurhuis G. J., Broxterman H. J., Ossenkoppele G. J., Baak J. P., Eekman C. A., Kuiper C. M., Feller N., van Heijningen T. H., Klumper E., Pieters R. Functional multidrug resistance phenotype associated with combined overexpression of Pgp/MDR1 and MRP together with 1-beta-D-arabinofuranosylcytosine sensitivity may predict clinical response in acute myeloid leukemia. Clin Cancer Res. 1995 Jan;1(1):81–93. [PubMed] [Google Scholar]
  30. Sommers C. L., Byers S. W., Thompson E. W., Torri J. A., Gelmann E. P. Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat. 1994;31(2-3):325–335. doi: 10.1007/BF00666165. [DOI] [PubMed] [Google Scholar]
  31. Takanashi S., Bachur N. R. Adriamycin metabolism in man. Evidence from urinary metabolites. Drug Metab Dispos. 1976 Jan-Feb;4(1):79–87. [PubMed] [Google Scholar]
  32. Trock B. J., Leonessa F., Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997 Jul 2;89(13):917–931. doi: 10.1093/jnci/89.13.917. [DOI] [PubMed] [Google Scholar]
  33. Tunggal J. K., Ballinger J. R., Tannock I. F. Influence of cell concentration in limiting the therapeutic benefit of P-glycoprotein reversal agents. Int J Cancer. 1999 May 31;81(5):741–747. doi: 10.1002/(sici)1097-0215(19990531)81:5<741::aid-ijc13>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  34. Twentyman P. R. Modification of cytotoxic drug resistance by non-immuno-suppressive cyclosporins. Br J Cancer. 1988 Mar;57(3):254–258. doi: 10.1038/bjc.1988.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vecchio S. D., Ciarmiello A., Potena M. I., Carriero M. V., Mainolfi C., Botti G., Thomas R., Cerra M., D'Aiuto G., Tsuruo T. In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients. Eur J Nucl Med. 1997 Feb;24(2):150–159. doi: 10.1007/BF02439547. [DOI] [PubMed] [Google Scholar]
  36. Vergote J., Moretti J. L., de Vries E. G., Garnier-Suillerot A. Comparison of the kinetics of active efflux of 99mTc-MIBI in cells with P-glycoprotein-mediated and multidrug-resistance protein-associated multidrug-resistance phenotypes. Eur J Biochem. 1998 Feb 15;252(1):140–146. doi: 10.1046/j.1432-1327.1998.2520140.x. [DOI] [PubMed] [Google Scholar]
  37. Xie X. Y., Robb D., Chow S., Hedley D. W. Discordant P-glycoprotein antigen expression and transport function in acute myeloid leukemia. Leukemia. 1995 Nov;9(11):1882–1887. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES