Abstract
Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human–hamster hybrid cells. There was a broader distribution of radiosensitivity and a higher mean SF 2 in chromosomally unstable clones. Cytogenetic and DNA double-strand break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant variants. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: chromosome instability, radioresistance, DNA repair, radiation therapy
Full Text
The Full Text of this article is available as a PDF (113.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bristow R. G., Benchimol S., Hill R. P. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol. 1996 Sep;40(3):197–223. doi: 10.1016/0167-8140(96)01806-3. [DOI] [PubMed] [Google Scholar]
- Chang W. P., Little J. B. Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol. 1991 Sep;60(3):483–496. doi: 10.1080/09553009114552331. [DOI] [PubMed] [Google Scholar]
- Dahlberg W. K., Little J. B., Fletcher J. A., Suit H. D., Okunieff P. Radiosensitivity in vitro of human soft tissue sarcoma cell lines and skin fibroblasts derived from the same patients. Int J Radiat Biol. 1993 Feb;63(2):191–198. doi: 10.1080/09553009314550251. [DOI] [PubMed] [Google Scholar]
- Fertil B., Malaise E. P. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat Oncol Biol Phys. 1985 Sep;11(9):1699–1707. doi: 10.1016/0360-3016(85)90223-8. [DOI] [PubMed] [Google Scholar]
- Kaplan M. I., Limoli C. L., Morgan W. F. Perpetuating radiation-induced chromosomal instability. Radiat Oncol Investig. 1997;5(3):124–128. doi: 10.1002/(sici)1520-6823(1997)5:3<124::aid-roi8>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- Kasid U., Pfeifer A., Weichselbaum R. R., Dritschilo A., Mark G. E. The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science. 1987 Aug 28;237(4818):1039–1041. doi: 10.1126/science.3616625. [DOI] [PubMed] [Google Scholar]
- Limoli C. L., Corcoran J. J., Milligan J. R., Ward J. F., Morgan W. F. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation. Radiat Res. 1999 Jun;151(6):677–685. [PubMed] [Google Scholar]
- Limoli C. L., Hartmann A., Shephard L., Yang C. R., Boothman D. A., Bartholomew J., Morgan W. F. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res. 1998 Aug 15;58(16):3712–3718. [PubMed] [Google Scholar]
- Limoli C. L., Kaplan M. I., Corcoran J., Meyers M., Boothman D. A., Morgan W. F. Chromosomal instability and its relationship to other end points of genomic instability. Cancer Res. 1997 Dec 15;57(24):5557–5563. [PubMed] [Google Scholar]
- Loeb L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991 Jun 15;51(12):3075–3079. [PubMed] [Google Scholar]
- Marder B. A., Morgan W. F. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol. 1993 Nov;13(11):6667–6677. doi: 10.1128/mcb.13.11.6667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKenna W. G., Iliakis G., Weiss M. C., Bernhard E. J., Muschel R. J. Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res. 1991 Mar;125(3):283–287. [PubMed] [Google Scholar]
- McKenna W. G., Weiss M. C., Bakanauskas V. J., Sandler H., Kelsten M. L., Biaglow J., Tuttle S. W., Endlich B., Ling C. C., Muschel R. J. The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys. 1990 Apr;18(4):849–859. doi: 10.1016/0360-3016(90)90407-b. [DOI] [PubMed] [Google Scholar]
- Morgan W. F., Day J. P., Kaplan M. I., McGhee E. M., Limoli C. L. Genomic instability induced by ionizing radiation. Radiat Res. 1996 Sep;146(3):247–258. [PubMed] [Google Scholar]
- Morgan W. F., Murnane J. P. A role for genomic instability in cellular radioresistance? Cancer Metastasis Rev. 1995 Mar;14(1):49–58. doi: 10.1007/BF00690211. [DOI] [PubMed] [Google Scholar]
- Mothersill C., Seymour C. Lethal mutations and genomic instability. Int J Radiat Biol. 1997 Jun;71(6):751–758. doi: 10.1080/095530097143743. [DOI] [PubMed] [Google Scholar]
- Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
- Ponnaiya B., Limoli C. L., Corcoran J., Kaplan M. I., Hartmann A., Morgan W. F. The evolution of chromosomal instability in Chinese hamster cells: a changing picture? Int J Radiat Biol. 1998 Dec;74(6):765–770. doi: 10.1080/095530098141041. [DOI] [PubMed] [Google Scholar]
- Rabbitts T. H. Chromosomal translocations in human cancer. Nature. 1994 Nov 10;372(6502):143–149. doi: 10.1038/372143a0. [DOI] [PubMed] [Google Scholar]
- Schimke R. T., Beverley S., Brown P., Cassin R., Federspiel N., Gasser C., Hill A., Johnston R., Mariani B., Mosse E. Gene amplification and drug resistance in cultured animal cells. Cancer Treat Rev. 1984 Mar;11 (Suppl A):9–17. doi: 10.1016/0305-7372(84)90038-0. [DOI] [PubMed] [Google Scholar]
- Schwartz J. L., Brinkman W. J., Kasten L., Miller D. W., Moan E. I., Murphy Y. T., Stella D., Sedita B. A. Altered metaphase chromosome structure in xrs-5 cells is not related to its radiation sensitivity or defective DNA break rejoining. Mutat Res. 1995 May;328(2):119–126. doi: 10.1016/0027-5107(94)00201-f. [DOI] [PubMed] [Google Scholar]
- Schwartz J. L., Murnane J., Weichselbaum R. R. The contribution of DNA ploidy to radiation sensitivity in human tumour cell lines. Br J Cancer. 1999 Feb;79(5-6):744–747. doi: 10.1038/sj.bjc.6690119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sklar M. D. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science. 1988 Feb 5;239(4840):645–647. doi: 10.1126/science.3277276. [DOI] [PubMed] [Google Scholar]
- Solomon E., Borrow J., Goddard A. D. Chromosome aberrations and cancer. Science. 1991 Nov 22;254(5035):1153–1160. doi: 10.1126/science.1957167. [DOI] [PubMed] [Google Scholar]
- Weichselbaum R. R., Rotmensch J., Ahmed-Swan S., Beckett M. A. Radiobiological characterization of 53 human tumor cell lines. Int J Radiat Biol. 1989 Nov;56(5):553–560. doi: 10.1080/09553008914551731. [DOI] [PubMed] [Google Scholar]
- West C. M., Davidson S. E., Elyan S. A., Swindell R., Roberts S. A., Orton C. J., Coyle C. A., Valentine H., Wilks D. P., Hunter R. D. The intrinsic radiosensitivity of normal and tumour cells. Int J Radiat Biol. 1998 Apr;73(4):409–413. doi: 10.1080/095530098142248. [DOI] [PubMed] [Google Scholar]