Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Feb;84(4):550–557. doi: 10.1054/bjoc.2000.1640

A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer

P H J Houba 1, E Boven 1, I H van der Meulen-Muileman 1, R G G Leenders 2, J W Scheeren 2, H M Pinedo 1, H J Haisma 1
PMCID: PMC2363760  PMID: 11207053

Abstract

The doxorubicin (DOX) prodrug N -[4-doxorubicin- N -carbonyl (oxymethyl) phenyl] O -β-glucuronyl carbamate (DOX-GA3) was synthesised for specific activation by human β-glucuronidase, which is released in necrotic areas of tumour lesions. This novel prodrug was completely activated to the parent drug by human β-glucuronidase with V max= 25.0 μmol min–1mg–1and K m= 1100 μM. The pharmacokinetics and distribution of DOX-GA3 in nude mice bearing human ovarian cancer xenografts (OVCAR-3) were determined and compared with DOX. Administration of DOX at 8 mg kg–1i.v. (maximum tolerated dose, MTD) to OVCAR-3-bearing mice resulted in a peak plasma concentration of the drug of 16.4 μM (t = 1 min). A 7.6-times lower peak plasma concentration of DOX was measured after injection of DOX-GA3 at 250 mg kg–1i.v. (50% of MTD). In normal tissues the prodrug showed peak DOX concentrations that were up to 5-fold (heart) lower than those found after DOX administration. DOX-GA3 activation by β-glucuronidase in the tumour yielded an almost 5-fold higher DOX peak concentration of 9.57 nmol g–1(P< 0.05) than the peak concentration of only 2.14 nmol g–1observed after DOX. As a consequence, the area under the curve of DOX calculated in tumour tissue after DOX-GA3 (13.1 μmol min–1g–1) was 10-fold higher than after DOX (1.31 μmol min–1g–1). The anti-tumour effects of DOX-GA3 and DOX were compared at equitoxic doses in OVCAR-3 xenografts at a mean tumour size of 125 mm3. The prodrug given i.v. at 500 mg kg–1weekly × 2 resulted in a maximum tumour growth inhibition of 87%, while the standard treatment with DOX at a dose of 8 mg kg–1i.v. weekly × 2 resulted in a maximum tumour growth inhibition of only 56%. Treatment with DOX-GA3 was also given to mice with larger tumours containing more necrosis. For tumours with a mean size of 400 mm3the specific growth delay by DOX-GA3 increased from 2.7 to 3.9. Our data indicate that DOX-GA3 is more effective than DOX and suggest that the prodrug will be specifically advantageous for treatment of advanced disease. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: anthracyclines, cancer chemotherapy, β-glucuronidase, glucuronide

Full Text

The Full Text of this article is available as a PDF (307.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosslet K., Czech J., Hoffmann D. Tumor-selective prodrug activation by fusion protein-mediated catalysis. Cancer Res. 1994 Apr 15;54(8):2151–2159. [PubMed] [Google Scholar]
  2. Boven E., Hendriks H. R., Erkelens C. A., Pinedo H. M. The anti-tumour effects of the prodrugs N-l-leucyl-doxorubicin and vinblastine-isoleucinate in human ovarian cancer xenografts. Br J Cancer. 1992 Dec;66(6):1044–1047. doi: 10.1038/bjc.1992.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boven E., Schlüper H. M., Erkelens C. A., Pinedo H. M. Doxorubicin compared with related compounds in a nude mouse model for human ovarian cancer. Eur J Cancer. 1990;26(9):983–986. doi: 10.1016/0277-5379(90)90626-5. [DOI] [PubMed] [Google Scholar]
  4. Boven E., Winograd B., Fodstad O., Lobbezoo M. W., Pinedo H. M. Preclinical phase II studies in human tumor lines: a European multicenter study. Eur J Cancer Clin Oncol. 1988 Mar;24(3):567–573. doi: 10.1016/s0277-5379(98)90039-6. [DOI] [PubMed] [Google Scholar]
  5. Connors T. A., Whisson M. E. Cure of mice bearing advanced plasma cell tumours with aniline mustard: the relationship between glucuronidase activity and tumour sensitivity. Nature. 1966 May 21;210(5038):866–867. doi: 10.1038/210866b0. [DOI] [PubMed] [Google Scholar]
  6. Deprez-de Campeneere D., Baurain R., Trouet A. Accumulation and metabolism of new anthracycline derivatives in the heart after IV injection into mice. Cancer Chemother Pharmacol. 1982;8(2):193–197. doi: 10.1007/BF00255483. [DOI] [PubMed] [Google Scholar]
  7. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haisma H. J., Sernee M. F., Hooijberg E., Brakenhoff R. H., vd Meulen-Muileman I. H., Pinedo H. M., Boven E. Construction and characterization of a fusion protein of single-chain anti-CD20 antibody and human beta-glucuronidase for antibody-directed enzyme prodrug therapy. Blood. 1998 Jul 1;92(1):184–190. [PubMed] [Google Scholar]
  9. Hamilton T. C., Young R. C., McKoy W. M., Grotzinger K. R., Green J. A., Chu E. W., Whang-Peng J., Rogan A. M., Green W. R., Ozols R. F. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983 Nov;43(11):5379–5389. [PubMed] [Google Scholar]
  10. Houba P. H., Boven E., Erkelens C. A., Leenders R. G., Scheeren J. W., Pinedo H. M., Haisma H. J. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts. Br J Cancer. 1998 Dec;78(12):1600–1606. doi: 10.1038/bjc.1998.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Houba P. H., Boven E., van der Meulen-Muileman I. H., Leenders R. G., Scheeren J. W., Pinedo H. M., Haisma H. J. Distribution and pharmacokinetics of the prodrug daunorubicin-GA3 in nude mice bearing human ovarian cancer xenografts. Biochem Pharmacol. 1999 Mar 15;57(6):673–680. doi: 10.1016/s0006-2952(98)00343-8. [DOI] [PubMed] [Google Scholar]
  12. Houba P. H., Leenders R. G., Boven E., Scheeren J. W., Pinedo H. M., Haisma H. J. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase for use in antibody-directed enzyme prodrug therapy. Biochem Pharmacol. 1996 Aug 9;52(3):455–463. doi: 10.1016/0006-2952(96)00248-1. [DOI] [PubMed] [Google Scholar]
  13. Leenders R. G., Damen E. W., Bijsterveld E. J., Scheeren H. W., Houba P. H., van der Meulen-Muileman I. H., Boven E., Haisma H. J. Novel anthracycline-spacer-beta-glucuronide,-beta-glucoside, and -beta-galactoside prodrugs for application in selective chemotherapy. Bioorg Med Chem. 1999 Aug;7(8):1597–1610. doi: 10.1016/s0968-0896(99)00095-4. [DOI] [PubMed] [Google Scholar]
  14. Martin G. R., Jain R. K. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 1994 Nov 1;54(21):5670–5674. [PubMed] [Google Scholar]
  15. Molthoff C. F., Calame J. J., Pinedo H. M., Boven E. Human ovarian cancer xenografts in nude mice: characterization and analysis of antigen expression. Int J Cancer. 1991 Jan 2;47(1):72–79. doi: 10.1002/ijc.2910470114. [DOI] [PubMed] [Google Scholar]
  16. Schumacher U., Adam E., Zangemeister-Wittke U., Gossrau R. Histochemistry of therapeutically relevant enzymes in human tumours transplanted into severe combined immunodeficient (SCID) mice: nitric oxide synthase-associated diaphorase, beta-D-glucuronidase and non-specific alkaline phosphatase. Acta Histochem. 1996 Nov;98(4):381–387. doi: 10.1016/s0065-1281(96)80004-3. [DOI] [PubMed] [Google Scholar]
  17. Tomino S., Paigen K., Tulsiani D. R., Touster O. Purification and chemical properities of mouse liver lysosomal (L form) beta-glucuronidase. J Biol Chem. 1975 Nov 10;250(21):8503–8509. [PubMed] [Google Scholar]
  18. Weiss R. B. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol. 1992 Dec;19(6):670–686. [PubMed] [Google Scholar]
  19. Young C. W., Yagoda A., Bittar E. S., Smith S. W., Grabstald H., Whitmore W. Therapeutic trial of aniline mustard in patients with advanced cancer. Comparison of therapeutic response with cytochemical assessment of tumor cell beta-glucuronidase activity. Cancer. 1976 Nov;38(5):1887–1895. doi: 10.1002/1097-0142(197611)38:5<1887::aid-cncr2820380504>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  20. Yuan F., Baxter L. T., Jain R. K. Pharmacokinetic analysis of two-step approaches using bifunctional and enzyme-conjugated antibodies. Cancer Res. 1991 Jun 15;51(12):3119–3130. [PubMed] [Google Scholar]
  21. de Jong J., Geijssen G. J., Munniksma C. N., Vermorken J. B., van der Vijgh W. J. Plasma pharmacokinetics and pharmacodynamics of a new prodrug N-l-leucyldoxorubicin and its metabolites in a phase I clinical trial. J Clin Oncol. 1992 Dec;10(12):1897–1906. doi: 10.1200/JCO.1992.10.12.1897. [DOI] [PubMed] [Google Scholar]
  22. de Jong J., Guérand W. S., Schoofs P. R., Bast A., van der Vijgh W. J. Simple and sensitive quantification of anthracyclines in mouse atrial tissue using high-performance liquid chromatography and fluorescence detection. J Chromatogr. 1991 Sep 18;570(1):209–216. doi: 10.1016/0378-4347(91)80218-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES