Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Feb;84(4):493–498. doi: 10.1054/bjoc.2000.1606

High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer

S Oesterreich 1, D C Allredl 1,2, S K Mohsin 1,2, Q Zhang 1, H Wong 1, A V Lee 1, C K Osborne 1, P O'Connell 1
PMCID: PMC2363776  PMID: 11207044

Abstract

We have recently discovered that the nuclear matrix protein SAFB is an oestrogen receptor corepressor. Since it has become clear that many steroid receptor cofactors play important roles in breast tumorigenesis, we investigated whether SAFB could also be involved in breast cancer. To address this question, the gene locus was examined for structural alterations in breast cancer tissue. Laser capture microdissection was used for isolating DNA from paired primary breast tumour and normal tissue specimens, and the loss of heterozygosity (LOH) at chromosome 19p13.2–3 was determined by use of microsatellite markers. LOH was detected at the marker D19S216, which colocalizes with the SAFB locus, in specimens from 29 (78.4%) of 37 informative patients. The peak LOH rate occurred at D19S216 near the SAFB locus, with LOH frequencies ranging from 21.6% to 47.2% at other markers. The finding of a very high LOH rate at the marker D19S216 strongly indicates the presence of a breast tumour-suppressor gene locus. While preliminary findings of mutations in SAFB suggest that this indeed may be a promising candidate, other potential candidate genes are located at this locus. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: loss of heterozygosity, chromosome 19p13, breast cancer, SAFB, tumour suppressor gene, mutation

Full Text

The Full Text of this article is available as a PDF (114.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anzick S. L., Kononen J., Walker R. L., Azorsa D. O., Tanner M. M., Guan X. Y., Sauter G., Kallioniemi O. P., Trent J. M., Meltzer P. S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997 Aug 15;277(5328):965–968. doi: 10.1126/science.277.5328.965. [DOI] [PubMed] [Google Scholar]
  2. Bignell G. R., Barfoot R., Seal S., Collins N., Warren W., Stratton M. R. Low frequency of somatic mutations in the LKB1/Peutz-Jeghers syndrome gene in sporadic breast cancer. Cancer Res. 1998 Apr 1;58(7):1384–1386. [PubMed] [Google Scholar]
  3. Broman K. W., Murray J. C., Sheffield V. C., White R. L., Weber J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998 Sep;63(3):861–869. doi: 10.1086/302011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. R., Chuaqui R., Vocke C. D., Berchuck A., Middleton L. P., Emmert-Buck M. R., Kohn E. C. Allelic loss on chromosome arm 8p: analysis of sporadic epithelial ovarian tumors. Gynecol Oncol. 1999 Jul;74(1):98–102. doi: 10.1006/gyno.1999.5439. [DOI] [PubMed] [Google Scholar]
  5. Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. doi: 10.1038/377454a0. [DOI] [PubMed] [Google Scholar]
  6. Chen Y., Chen C. F., Riley D. J., Allred D. C., Chen P. L., Von Hoff D., Osborne C. K., Lee W. H. Aberrant subcellular localization of BRCA1 in breast cancer. Science. 1995 Nov 3;270(5237):789–791. doi: 10.1126/science.270.5237.789. [DOI] [PubMed] [Google Scholar]
  7. Cook W. D., McCaw B. J. Accommodating haploinsufficient tumor suppressor genes in Knudson's model. Oncogene. 2000 Jul 13;19(30):3434–3438. doi: 10.1038/sj.onc.1203653. [DOI] [PubMed] [Google Scholar]
  8. Deloukas P., Schuler G. D., Gyapay G., Beasley E. M., Soderlund C., Rodriguez-Tomé P., Hui L., Matise T. C., McKusick K. B., Beckmann J. S. A physical map of 30,000 human genes. Science. 1998 Oct 23;282(5389):744–746. doi: 10.1126/science.282.5389.744. [DOI] [PubMed] [Google Scholar]
  9. DuPont B. R., Garcia D. K., Sullivan T. M., Naylor S. L., Oesterreich S. Assignment of SAFB encoding Hsp27 ERE-TATA binding protein (HET)/scaffold attachment factor B (SAF-B) to human chromosome 19 band p13. Cytogenet Cell Genet. 1997;79(3-4):284–285. doi: 10.1159/000134744. [DOI] [PubMed] [Google Scholar]
  10. Emmert-Buck M. R., Bonner R. F., Smith P. D., Chuaqui R. F., Zhuang Z., Goldstein S. R., Weiss R. A., Liotta L. A. Laser capture microdissection. Science. 1996 Nov 8;274(5289):998–1001. doi: 10.1126/science.274.5289.998. [DOI] [PubMed] [Google Scholar]
  11. Esteller M., Silva J. M., Dominguez G., Bonilla F., Matias-Guiu X., Lerma E., Bussaglia E., Prat J., Harkes I. C., Repasky E. A. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000 Apr 5;92(7):564–569. doi: 10.1093/jnci/92.7.564. [DOI] [PubMed] [Google Scholar]
  12. Fasman K. H., Letovsky S. I., Li P., Cottingham R. W., Kingsbury D. T. The GDB Human Genome Database Anno 1997. Nucleic Acids Res. 1997 Jan 1;25(1):72–81. doi: 10.1093/nar/25.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giachino C., Lantelme E., Lanzetti L., Saccone S., Bella Valle G., Migone N. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics. 1997 May 1;41(3):427–434. doi: 10.1006/geno.1997.4645. [DOI] [PubMed] [Google Scholar]
  14. Glass C. K., Rose D. W., Rosenfeld M. G. Nuclear receptor coactivators. Curr Opin Cell Biol. 1997 Apr;9(2):222–232. doi: 10.1016/s0955-0674(97)80066-x. [DOI] [PubMed] [Google Scholar]
  15. Hörlein A. J., När A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M., Glass C. K. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct 5;377(6548):397–404. doi: 10.1038/377397a0. [DOI] [PubMed] [Google Scholar]
  16. Kairouz R., Clarke R. A., Marr P. J., Watters D., Lavin M. F., Kearsley J. H., Lee C. S. ATM protein synthesis patterns in sporadic breast cancer. Mol Pathol. 1999 Oct;52(5):252–256. doi: 10.1136/mp.52.5.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaiser P., Flick K., Wittenberg C., Reed S. I. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell. 2000 Aug 4;102(3):303–314. doi: 10.1016/s0092-8674(00)00036-2. [DOI] [PubMed] [Google Scholar]
  18. Lee J. W., Choi H. S., Gyuris J., Brent R., Moore D. D. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 1995 Feb;9(2):243–254. doi: 10.1210/mend.9.2.7776974. [DOI] [PubMed] [Google Scholar]
  19. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  20. Montano M. M., Ekena K., Delage-Mourroux R., Chang W., Martini P., Katzenellenbogen B. S. An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6947–6952. doi: 10.1073/pnas.96.12.6947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morris B. J. Insulin receptor gene in hypertension. Clin Exp Hypertens. 1997 Jul-Aug;19(5-6):551–565. doi: 10.3109/10641969709083169. [DOI] [PubMed] [Google Scholar]
  22. Mueller L., Cordes V. C., Bischoff F. R., Ponstingl H. Human RanBP3, a group of nuclear RanGTP binding proteins. FEBS Lett. 1998 May 15;427(3):330–336. doi: 10.1016/s0014-5793(98)00459-1. [DOI] [PubMed] [Google Scholar]
  23. Nakagawa H., Koyama K., Monden M., Nakamura Y. Analysis of APCL, a brain-specific adenomatous polyposis coli homologue, for mutations and expression in brain tumors. Jpn J Cancer Res. 1999 Sep;90(9):982–986. doi: 10.1111/j.1349-7006.1999.tb00845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Connell P., Fischbach K., Hilsenbeck S., Mohsin S. K., Fuqua S. A., Clark G. M., Osborne C. K., Allred D. C. Loss of heterozygosity at D14S62 and metastatic potential of breast cancer. J Natl Cancer Inst. 1999 Aug 18;91(16):1391–1397. doi: 10.1093/jnci/91.16.1391. [DOI] [PubMed] [Google Scholar]
  25. Oesterreich S., Weng C. N., Qiu M., Hilsenbeck S. G., Osborne C. K., Fuqua S. A. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res. 1993 Oct 1;53(19):4443–4448. [PubMed] [Google Scholar]
  26. Oesterreich S., Zhang Q., Hopp T., Fuqua S. A., Michaelis M., Zhao H. H., Davie J. R., Osborne C. K., Lee A. V. Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein HET/SAF-B, a novel inhibitor of ER-mediated transactivation. Mol Endocrinol. 2000 Mar;14(3):369–381. doi: 10.1210/mend.14.3.0432. [DOI] [PubMed] [Google Scholar]
  27. Osborne C. K. Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat. 1998;51(3):227–238. doi: 10.1023/a:1006132427948. [DOI] [PubMed] [Google Scholar]
  28. Pagano M., Tam S. W., Theodoras A. M., Beer-Romero P., Del Sal G., Chau V., Yew P. R., Draetta G. F., Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995 Aug 4;269(5224):682–685. doi: 10.1126/science.7624798. [DOI] [PubMed] [Google Scholar]
  29. Sande S., Privalsky M. L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol. 1996 Jul;10(7):813–825. doi: 10.1210/mend.10.7.8813722. [DOI] [PubMed] [Google Scholar]
  30. Scheffner M. Ubiquitin, E6-AP, and their role in p53 inactivation. Pharmacol Ther. 1998 Jun;78(3):129–139. doi: 10.1016/s0163-7258(98)00003-5. [DOI] [PubMed] [Google Scholar]
  31. Sheikh M. S., Hollander M. C., Fornance A. J., Jr Role of Gadd45 in apoptosis. Biochem Pharmacol. 2000 Jan 1;59(1):43–45. doi: 10.1016/s0006-2952(99)00291-9. [DOI] [PubMed] [Google Scholar]
  32. Shibata H., Spencer T. E., Oñate S. A., Jenster G., Tsai S. Y., Tsai M. J., O'Malley B. W. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res. 1997;52:141–165. [PubMed] [Google Scholar]
  33. Simone N. L., Bonner R. F., Gillespie J. W., Emmert-Buck M. R., Liotta L. A. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 1998 Jul;14(7):272–276. doi: 10.1016/s0168-9525(98)01489-9. [DOI] [PubMed] [Google Scholar]
  34. Simpson D. J., Hibberts N. A., McNicol A. M., Clayton R. N., Farrell W. E. Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res. 2000 Mar 1;60(5):1211–1216. [PubMed] [Google Scholar]
  35. Tam S. W., Theodoras A. M., Pagano M. Kip1 degradation via the ubiquitin-proteasome pathway. Leukemia. 1997 Apr;11 (Suppl 3):363–366. [PubMed] [Google Scholar]
  36. Tamura G., Maesawa C., Suzuki Y., Kashiwaba M., Ishida M., Saito K., Satodate R. Improved detection of loss of heterozygosity at retinoblastoma gene locus in human breast carcinoma. Pathol Int. 1994 Jan;44(1):34–38. doi: 10.1111/j.1440-1827.1994.tb02583.x. [DOI] [PubMed] [Google Scholar]
  37. Townson S. M., Sullivan T., Zhang Q., Clark G. M., Osborne C. K., Lee A. V., Oesterreich S. HET/SAF-B overexpression causes growth arrest and multinuclearity and is associated with aneuploidy in human breast cancer. Clin Cancer Res. 2000 Sep;6(9):3788–3796. [PubMed] [Google Scholar]
  38. Wang Z., Cody J. D., Leach R. J., O'Connell P. Gene expression patterns in cell lines from patients with 18q- syndrome. Hum Genet. 1999 Jun;104(6):467–475. doi: 10.1007/s004390050989. [DOI] [PubMed] [Google Scholar]
  39. Warner M., Nilsson S., Gustafsson J. A. The estrogen receptor family. Curr Opin Obstet Gynecol. 1999 Jun;11(3):249–254. doi: 10.1097/00001703-199906000-00003. [DOI] [PubMed] [Google Scholar]
  40. Zaika A., Marchenko N., Moll U. M. Cytoplasmically "sequestered" wild type p53 protein is resistant to Mdm2-mediated degradation. J Biol Chem. 1999 Sep 24;274(39):27474–27480. doi: 10.1074/jbc.274.39.27474. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES