Abstract
Ras is frequently mutated in cancer, and novel therapies are being developed to target Ras signalling. To identify non-invasive surrogate markers of Ras activation and inhibition, we used31P magnetic resonance spectroscopy (MRS) and investigated NIH 3T3 cells compared to a mutant ras transfected counterpart. The MR spectra indicated that phosphocholine (PC) levels increased significantly from 3 ± 2 fmol cell−1in NIH 3T3 cells to 13 ± 4 fmol cell−1in the transfected cells. The PC/NTP ratio increased significantly from 0.3 ± 0.1 to 0.7 ± 0.3. This could not be explained by either a faster proliferation rate or by alterations in cell cycle distribution. Both cell lines were treated with simvastatin, 17-AAG and R115777, agents which inhibit Ras signalling. Cell proliferation was inhibited in both cell lines. The spectrum of NIH 3T3 cells was not affected by treatment. In contrast, in the ras transfected cells growth inhibition was associated with an average 35 ± 5% drop in PC levels and a comparable drop in PC/NTP. Thus the MRS visible increase in phosphocholine is associated with Ras activation, and response to treatment is associated with partial reversal of phosphocholine increase in ras transfected cells. MRS might therefore be a useful tool in detecting Ras activation and its inhibition following targeted therapies. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: magnetic resonance, 31P spectroscopy, phosphocholine, Ras, NIH 3T3
Full Text
The Full Text of this article is available as a PDF (75.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboagye E. O., Bhujwalla Z. M. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999 Jan 1;59(1):80–84. [PubMed] [Google Scholar]
- Bhakoo K. K., Williams S. R., Florian C. L., Land H., Noble M. D. Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res. 1996 Oct 15;56(20):4630–4635. [PubMed] [Google Scholar]
- Bjørkøy G., Overvatn A., Diaz-Meco M. T., Moscat J., Johansen T. Evidence for a bifurcation of the mitogenic signaling pathway activated by Ras and phosphatidylcholine-hydrolyzing phospholipase C. J Biol Chem. 1995 Sep 8;270(36):21299–21306. doi: 10.1074/jbc.270.36.21299. [DOI] [PubMed] [Google Scholar]
- Boral A. L., Dessain S., Chabner B. A. Clinical evaluation of biologically targeted drugs: obstacles and opportunities. Cancer Chemother Pharmacol. 1998;42 (Suppl):S3–21. doi: 10.1007/s002800051075. [DOI] [PubMed] [Google Scholar]
- Carnero A., Cuadrado A., del Peso L., Lacal J. C. Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cells. Oncogene. 1994 May;9(5):1387–1395. [PubMed] [Google Scholar]
- Gille H., Downward J. Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem. 1999 Jul 30;274(31):22033–22040. doi: 10.1074/jbc.274.31.22033. [DOI] [PubMed] [Google Scholar]
- Heasley L. E., Thaler S., Nicks M., Price B., Skorecki K., Nemenoff R. A. Induction of cytosolic phospholipase A2 by oncogenic Ras in human non-small cell lung cancer. J Biol Chem. 1997 Jun 6;272(23):14501–14504. doi: 10.1074/jbc.272.23.14501. [DOI] [PubMed] [Google Scholar]
- Lacal J. C. Diacylglycerol production in Xenopus laevis oocytes after microinjection of p21ras proteins is a consequence of activation of phosphatidylcholine metabolism. Mol Cell Biol. 1990 Jan;10(1):333–340. doi: 10.1128/mcb.10.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacal J. C., Moscat J., Aaronson S. A. Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature. 1987 Nov 19;330(6145):269–272. doi: 10.1038/330269a0. [DOI] [PubMed] [Google Scholar]
- Leonard S., Beck L., Sinensky M. Inhibition of isoprenoid biosynthesis and the post-translational modification of pro-p21. J Biol Chem. 1990 Mar 25;265(9):5157–5160. [PubMed] [Google Scholar]
- Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
- Liu J. J., Chao J. R., Jiang M. C., Ng S. Y., Yen J. J., Yang-Yen H. F. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol Cell Biol. 1995 Jul;15(7):3654–3663. doi: 10.1128/mcb.15.7.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez-Barahona M., Kaplan P. L., Cornet M. E., Diaz-Meco M. T., Larrodera P., Diaz-Laviada I., Municio A. M., Moscat J. Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic cascade. J Biol Chem. 1990 Jun 5;265(16):9022–9026. [PubMed] [Google Scholar]
- Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992 Sep-Oct;5(5):303–324. doi: 10.1002/nbm.1940050518. [DOI] [PubMed] [Google Scholar]
- Podo F., Ferretti A., Knijn A., Zhang P., Ramoni C., Barletta B., Pini C., Baccarini S., Pulciani S. Detection of phosphatidylcholine-specific phospholipase C in NIH-3T3 fibroblasts and their H-ras transformants: NMR and immunochemical studies. Anticancer Res. 1996 May-Jun;16(3B):1399–1412. [PubMed] [Google Scholar]
- Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999 Nov;12(7):413–439. doi: 10.1002/(sici)1099-1492(199911)12:7<413::aid-nbm587>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Price B. D., Morris J. D., Marshall C. J., Hall A. Stimulation of phosphatidylcholine hydrolysis, diacylglycerol release, and arachidonic acid production by oncogenic ras is a consequence of protein kinase C activation. J Biol Chem. 1989 Oct 5;264(28):16638–16643. [PubMed] [Google Scholar]
- Ratnam S., Kent C. Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines. Arch Biochem Biophys. 1995 Nov 10;323(2):313–322. doi: 10.1006/abbi.1995.9959. [DOI] [PubMed] [Google Scholar]
- Ronen S. M., DiStefano F., McCoy C. L., Robertson D., Smith T. A., Al-Saffar N. M., Titley J., Cunningham D. C., Griffiths J. R., Leach M. O. Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis. Br J Cancer. 1999 Jun;80(7):1035–1041. doi: 10.1038/sj.bjc.6690459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronen S. M., Rushkin E., Degani H. Lipid metabolism in large T47D human breast cancer spheroids: 31P- and 13C-NMR studies of choline and ethanolamine uptake. Biochim Biophys Acta. 1992 Mar 20;1138(3):203–212. doi: 10.1016/0925-4439(92)90039-p. [DOI] [PubMed] [Google Scholar]
- Schulte T. W., Neckers L. M. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol. 1998;42(4):273–279. doi: 10.1007/s002800050817. [DOI] [PubMed] [Google Scholar]
- Smith T. A., Eccles S., Ormerod M. G., Tombs A. J., Titley J. C., Leach M. O. The phosphocholine and glycerophosphocholine content of an oestrogen-sensitive rat mammary tumour correlates strongly with growth rate. Br J Cancer. 1991 Nov;64(5):821–826. doi: 10.1038/bjc.1991.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teegarden D., Taparowsky E. J., Kent C. Altered phosphatidylcholine metabolism in C3H10T1/2 cells transfected with the Harvey-ras oncogene. J Biol Chem. 1990 Apr 15;265(11):6042–6047. [PubMed] [Google Scholar]
- Ting Y. L., Sherr D., Degani H. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Anticancer Res. 1996 May-Jun;16(3B):1381–1388. [PubMed] [Google Scholar]
- Tyagi R. K., Azrad A., Degani H., Salomon Y. Simultaneous extraction of cellular lipids and water-soluble metabolites: evaluation by NMR spectroscopy. Magn Reson Med. 1996 Feb;35(2):194–200. doi: 10.1002/mrm.1910350210. [DOI] [PubMed] [Google Scholar]
- Wieprecht M., Wieder T., Paul C., Geilen C. C., Orfanos C. E. Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases. J Biol Chem. 1996 Apr 26;271(17):9955–9961. doi: 10.1074/jbc.271.17.9955. [DOI] [PubMed] [Google Scholar]
- Zujewski J., Horak I. D., Bol C. J., Woestenborghs R., Bowden C., End D. W., Piotrovsky V. K., Chiao J., Belly R. T., Todd A. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol. 2000 Feb;18(4):927–941. doi: 10.1200/JCO.2000.18.4.927. [DOI] [PubMed] [Google Scholar]