Abstract
Cachexia is a syndrome characterized by profound tissue wasting that frequently complicates malignancies. In a cancer cachexia model we have shown that protein depletion in the skeletal muscle, which is a prominent feature of the syndrome, is mostly due to enhanced proteolysis. There is consensus on the views that the ubiquitin/proteasome pathway plays an important role in such metabolic response and that cytotoxic cytokines such as TNFα are involved in its triggering (Costelli and Baccino, 2000), yet the mechanisms by which the relevant extracellular signals are transduced into protein hypercatabolism are largely unknown. Moreover, little information is presently available as to the possible involvement in muscle protein waste of the Ca2+-dependent proteolysis, which may provide a rapidly activated system in response to the extracellular signals. In the present work we have evaluated the status of the Ca2+-dependent proteolytic system in the gastrocnemius muscle of AH-130 tumour-bearing rats by assaying the activity of calpain as well as the levels of calpastatin, the natural calpain inhibitor, and of the 130 kDa Ca2+-ATPase, both of which are known calpain substrates. After tumour transplantation, total calpastatin activity progressively declined, while total calpain activity remained unchanged, resulting in a progressively increasing unbalance in the calpain/calpastatin ratio. A decrease was also observed for the 130 kDa plasma membrane form of Ca2+-ATPase, while there was no change in the level of the 90 kDa sarcoplasmic Ca2+-ATPase, which is resistant to the action of calpain. Decreased levels of both calpastatin and 130 kDa Ca2+-ATPase have been also detected in the heart of the tumour-bearers. These observations strongly suggest that Ca2+-dependent proteolysis was activated in the skeletal muscle and heart of tumour-bearing animals and raise the possibility that such activation may play a role in sparking off the muscle protein hypercatabolic response that characterizes cancer cachexia. © 2001 Cancer Research Campaignhttp://www.bjcancer.com
Keywords: calpain, protein breakdown, muscle wasting
Full Text
The Full Text of this article is available as a PDF (78.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baracos V. E., DeVivo C., Hoyle D. H., Goldberg A. L. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol. 1995 May;268(5 Pt 1):E996–1006. doi: 10.1152/ajpendo.1995.268.5.E996. [DOI] [PubMed] [Google Scholar]
- Beck S. A., Smith K. L., Tisdale M. J. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res. 1991 Nov 15;51(22):6089–6093. [PubMed] [Google Scholar]
- Bick R. J., Liao J. P., King T. W., LeMaistre A., McMillin J. B., Buja L. M. Temporal effects of cytokines on neonatal cardiac myocyte Ca2+ transients and adenylate cyclase activity. Am J Physiol. 1997 Apr;272(4 Pt 2):H1937–H1944. doi: 10.1152/ajpheart.1997.272.4.H1937. [DOI] [PubMed] [Google Scholar]
- Busquets S., García-Martínez C., Alvarez B., Carbó N., López-Soriano F. J., Argilés J. M. Calpain-3 gene expression is decreased during experimental cancer cachexia. Biochim Biophys Acta. 2000 Jun 1;1475(1):5–9. doi: 10.1016/s0304-4165(00)00050-7. [DOI] [PubMed] [Google Scholar]
- Carafoli E., Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun. 1998 Jun 18;247(2):193–203. doi: 10.1006/bbrc.1998.8378. [DOI] [PubMed] [Google Scholar]
- Costelli P., Baccino F. M. Cancer cachexia: from experimental models to patient management. Curr Opin Clin Nutr Metab Care. 2000 May;3(3):177–181. doi: 10.1097/00075197-200005000-00003. [DOI] [PubMed] [Google Scholar]
- Costelli P., Carbó N., Tessitore L., Bagby G. J., Lopez-Soriano F. J., Argilés J. M., Baccino F. M. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 1993 Dec;92(6):2783–2789. doi: 10.1172/JCI116897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das K. C., Lewis-Molock Y., White C. W. Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am J Physiol. 1995 Nov;269(5 Pt 1):L588–L602. doi: 10.1152/ajplung.1995.269.5.L588. [DOI] [PubMed] [Google Scholar]
- Furukawa K., Mattson M. P. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem. 1998 May;70(5):1876–1886. doi: 10.1046/j.1471-4159.1998.70051876.x. [DOI] [PubMed] [Google Scholar]
- Hirai S., Kawasaki H., Yaniv M., Suzuki K. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett. 1991 Aug 5;287(1-2):57–61. doi: 10.1016/0014-5793(91)80015-u. [DOI] [PubMed] [Google Scholar]
- Jones P. L., Ping D., Boss J. M. Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol. 1997 Dec;17(12):6970–6981. doi: 10.1128/mcb.17.12.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kien C. L., Camitta B. M. Close association of accelerated rates of whole body protein turnover (synthesis and breakdown) and energy expenditure in children with newly diagnosed acute lymphocytic leukemia. JPEN J Parenter Enteral Nutr. 1987 Mar-Apr;11(2):129–134. doi: 10.1177/0148607187011002129. [DOI] [PubMed] [Google Scholar]
- Kien C. L., Camitta B. M. Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma. Cancer Res. 1983 Nov;43(11):5586–5592. [PubMed] [Google Scholar]
- Liu Z. Q., Kunimatsu M., Yang J. P., Ozaki Y., Sasaki M., Okamoto T. Proteolytic processing of nuclear factor kappa B by calpain in vitro. FEBS Lett. 1996 Apr 29;385(1-2):109–113. doi: 10.1016/0014-5793(96)00360-2. [DOI] [PubMed] [Google Scholar]
- Llovera M., Carbó N., García-Martínez C., Costelli P., Tessitore L., Baccino F. M., Agell N., Bagby G. J., López-Soriano F. J., Argilés J. M. Anti-TNF treatment reverts increased muscle ubiquitin gene expression in tumour-bearing rats. Biochem Biophys Res Commun. 1996 Apr 25;221(3):653–655. doi: 10.1006/bbrc.1996.0651. [DOI] [PubMed] [Google Scholar]
- Llovera M., Garcia-Martinez C., Agell N., Lopez-Soriano F. J., Argiles J. M. Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. Int J Cancer. 1995 Mar 29;61(1):138–141. doi: 10.1002/ijc.2910610123. [DOI] [PubMed] [Google Scholar]
- Lundholm K., Ekman L., Karlberg I., Edström S., Scherstén T. Comparison of hepatic cathepsin D activity in response to tumor growth and to caloric restriction in mice. Cancer Res. 1980 May;40(5):1680–1685. [PubMed] [Google Scholar]
- Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Horecker B. L. The involvement of calpain in the activation of protein kinase C in neutrophils stimulated by phorbol myristic acid. J Biol Chem. 1986 Mar 25;261(9):4101–4105. [PubMed] [Google Scholar]
- Melville S., McNurlan M. A., Calder A. G., Garlick P. J. Increased protein turnover despite normal energy metabolism and responses to feeding in patients with lung cancer. Cancer Res. 1990 Feb 15;50(4):1125–1131. [PubMed] [Google Scholar]
- Nath R., Raser K. J., Stafford D., Hajimohammadreza I., Posner A., Allen H., Talanian R. V., Yuen P., Gilbertsen R. B., Wang K. K. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996 Nov 1;319(Pt 3):683–690. doi: 10.1042/bj3190683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Salamino F., Sparatore B., Viotti P., Michetti M., Duzzi L., Bianchi G. Decreased level of calpain inhibitor activity in red blood cells from Milan hypertensive rats. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1370–1375. doi: 10.1016/s0006-291x(86)80434-x. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Sparatore B., Salamino F., Pontremoli R., Tizianello A., Barlassina C., Cusi D., Colombo R., Bianchi G. Erythrocyte deficiency in calpain inhibitor activity in essential hypertension. Hypertension. 1988 Nov;12(5):474–478. doi: 10.1161/01.hyp.12.5.474. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Viotti P. L., Michetti M., Salamino F., Horecker B. L. Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains. Arch Biochem Biophys. 1991 Aug 1;288(2):646–652. doi: 10.1016/0003-9861(91)90247-g. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Viotti P. L., Michetti M., Salamino F., Sparatore B., Melloni E. Modulation of inhibitory efficiency of rat skeletal muscle calpastatin by phosphorylation. Biochem Biophys Res Commun. 1992 Sep 16;187(2):751–759. doi: 10.1016/0006-291x(92)91259-s. [DOI] [PubMed] [Google Scholar]
- Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
- Salamino F., De Tullio R., Mengotti P., Viotti P. L., Melloni E., Pontremoli S. Different susceptibility of red cell membrane proteins to calpain degradation. Arch Biochem Biophys. 1992 Oct;298(1):287–292. doi: 10.1016/0003-9861(92)90125-g. [DOI] [PubMed] [Google Scholar]
- Salamino F., De Tullio R., Michetti M., Mengotti P., Melloni E., Pontremoli S. Modulation of calpastatin specificity in rat tissues by reversible phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1326–1332. doi: 10.1006/bbrc.1994.1376. [DOI] [PubMed] [Google Scholar]
- Salamino F., Sparatore B., Melloni E., Michetti M., Viotti P. L., Pontremoli S., Carafoli E. The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte. Cell Calcium. 1994 Jan;15(1):28–35. doi: 10.1016/0143-4160(94)90101-5. [DOI] [PubMed] [Google Scholar]
- Soeters P. B., Baracos V. E. Anabolic and catabolic mediators. Curr Opin Clin Nutr Metab Care. 1999 May;2(3):195–199. doi: 10.1097/00075197-199905000-00001. [DOI] [PubMed] [Google Scholar]
- Temparis S., Asensi M., Taillandier D., Aurousseau E., Larbaud D., Obled A., Béchet D., Ferrara M., Estrela J. M., Attaix D. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res. 1994 Nov 1;54(21):5568–5573. [PubMed] [Google Scholar]
- Tessitore L., Bonelli G., Baccino F. M. Early development of protein metabolic perturbations in the liver and skeletal muscle of tumour-bearing rats. A model system for cancer cachexia. Biochem J. 1987 Jan 1;241(1):153–159. doi: 10.1042/bj2410153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tessitore L., Costelli P., Baccino F. M. Humoral mediation for cachexia in tumour-bearing rats. Br J Cancer. 1993 Jan;67(1):15–23. doi: 10.1038/bjc.1993.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tessitore L., Costelli P., Bonetti G., Baccino F. M. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys. 1993 Oct;306(1):52–58. doi: 10.1006/abbi.1993.1479. [DOI] [PubMed] [Google Scholar]
- Tisdale M. J. Biology of cachexia. J Natl Cancer Inst. 1997 Dec 3;89(23):1763–1773. doi: 10.1093/jnci/89.23.1763. [DOI] [PubMed] [Google Scholar]
- Vezzoli G., Elli A. A., Tripodi G., Bianchi G., Carafoli E. Calcium ATPase in erythrocytes of spontaneously hypertensive rats of the Milan strain. J Hypertens. 1985 Dec;3(6):645–648. doi: 10.1097/00004872-198512000-00011. [DOI] [PubMed] [Google Scholar]
- Watt F., Molloy P. L. Specific cleavage of transcription factors by the thiol protease, m-calpain. Nucleic Acids Res. 1993 Nov 11;21(22):5092–5100. doi: 10.1093/nar/21.22.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams A. B., Decourten-Myers G. M., Fischer J. E., Luo G., Sun X., Hasselgren P. O. Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J. 1999 Aug;13(11):1435–1443. doi: 10.1096/fasebj.13.11.1435. [DOI] [PubMed] [Google Scholar]
- Williams A., Sun X., Fischer J. E., Hasselgren P. O. The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery. 1999 Oct;126(4):744–750. [PubMed] [Google Scholar]
- Yoshida Y., Shiga T., Imai S. Degradation of sarcoplasmic reticulum calcium-pumping ATPase in ischemic-reperfused myocardium: role of calcium-activated neutral protease. Basic Res Cardiol. 1990 Sep-Oct;85(5):495–507. doi: 10.1007/BF01931495. [DOI] [PubMed] [Google Scholar]
