Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Apr;84(8):1122–1125. doi: 10.1054/bjoc.2000.1719

Chronic hypoxia modulates tumour cell radioresponse through cytokine-inducible nitric oxide synthase

D L Van den Berge 1, M De Ridder 1, V N Verovski 1, M Y Janssens 1, C Monsaert 1, G A Storme 1
PMCID: PMC2363861  PMID: 11308264

Abstract

Chronic hypoxia up-regulated the mRNA and protein expression of inducible nitric oxide synthase (iNOS) in EMT-6 tumour cells exposed to interferon (IFN)-gamma and interleukin (IL)-I beta. Low concentrations of cytokines (1 unit ml−1) in 1% but not in 21% oxygen induced a remarkable increase in NO production and a 1.8-fold hypoxic cell radiosensitization. Therefore, chronic hypoxia may potentially be exploited to increase tumour cell radioresponse through the cytokine-inducible iNOS pathway. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: chronic hypoxia, radiosensitization, nitric oxide synthase, nitric oxide, cytokines

Full Text

The Full Text of this article is available as a PDF (290.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambs S., Merriam W. G., Bennett W. P., Felley-Bosco E., Ogunfusika M. O., Oser S. M., Klein S., Shields P. G., Billiar T. R., Harris C. C. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998 Jan 15;58(2):334–341. [PubMed] [Google Scholar]
  2. Dachs G. U., Stratford I. J. The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy. Br J Cancer Suppl. 1996 Jul;27:S126–S132. [PMC free article] [PubMed] [Google Scholar]
  3. Dachs G. U., Tozer G. M. Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer. 2000 Aug;36(13 Spec No):1649–1660. doi: 10.1016/s0959-8049(00)00159-3. [DOI] [PubMed] [Google Scholar]
  4. Griffin R. J., Makepeace C. M., Hur W. J., Song C. W. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide. Int J Radiat Oncol Biol Phys. 1996 Sep 1;36(2):377–383. doi: 10.1016/s0360-3016(96)00329-x. [DOI] [PubMed] [Google Scholar]
  5. Janssens M. Y., Van den Berge D. L., Verovski V. N., Monsaert C., Storme G. A. Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res. 1998 Dec 15;58(24):5646–5648. [PubMed] [Google Scholar]
  6. Janssens M. Y., Verovski V. N., Van den Berge D. L., Monsaert C., Storme G. A. Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation. Br J Cancer. 1999 Mar;79(7-8):1085–1089. doi: 10.1038/sj.bjc.6690173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Melillo G., Musso T., Sica A., Taylor L. S., Cox G. W., Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995 Dec 1;182(6):1683–1693. doi: 10.1084/jem.182.6.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mitchell J. B., Cook J. A., Krishna M. C., DeGraff W., Gamson J., Fisher J., Christodoulou D., Wink D. A. Radiation sensitisation by nitric oxide releasing agents. Br J Cancer Suppl. 1996 Jul;27:S181–S184. [PMC free article] [PubMed] [Google Scholar]
  9. Salzman A., Denenberg A. G., Ueta I., O'Connor M., Linn S. C., Szabó C. Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. Am J Physiol. 1996 Apr;270(4 Pt 1):G565–G573. doi: 10.1152/ajpgi.1996.270.4.G565. [DOI] [PubMed] [Google Scholar]
  10. Thomsen L. L., Lawton F. G., Knowles R. G., Beesley J. E., Riveros-Moreno V., Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 1994 Mar 1;54(5):1352–1354. [PubMed] [Google Scholar]
  11. Thomsen L. L., Miles D. W., Happerfield L., Bobrow L. G., Knowles R. G., Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995 Jul;72(1):41–44. doi: 10.1038/bjc.1995.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thomsen L. L., Miles D. W. Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev. 1998 Mar;17(1):107–118. doi: 10.1023/a:1005912906436. [DOI] [PubMed] [Google Scholar]
  13. Verovski V. N., Van den Berge D. L., Soete G. A., Bols B. L., Storme G. A. Intrinsic radiosensitivity of human pancreatic tumour cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside. Br J Cancer. 1996 Dec;74(11):1734–1742. doi: 10.1038/bjc.1996.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wink D. A., Vodovotz Y., Laval J., Laval F., Dewhirst M. W., Mitchell J. B. The multifaceted roles of nitric oxide in cancer. Carcinogenesis. 1998 May;19(5):711–721. doi: 10.1093/carcin/19.5.711. [DOI] [PubMed] [Google Scholar]
  15. Yoshioka K., Thompson J., Miller M. J., Fisher J. W. Inducible nitric oxide synthase expression and erythropoietin production in human hepatocellular carcinoma cells. Biochem Biophys Res Commun. 1997 Mar 27;232(3):702–706. doi: 10.1006/bbrc.1997.6323. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES