Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 May;84(9):1272–1279. doi: 10.1054/bjoc.2001.1786

The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway

O Tounekti 1,2, A Kenani 1,3, N Foray 4, S Orlowski 5, L M Mir 1
PMCID: PMC2363894  PMID: 11336481

Abstract

Bleomycin is a cytotoxic antibiotic that generates DNA double-strand breaks (DSB) and DNA single-strand breaks (SSB). It is possible to introduce known quantities of bleomycin molecules into cells. Low amounts kill the cells by a slow process termed mitotic cell death, while high amounts produce a fast process that has been termed pseudoapoptosis. We previously showed that these types of cell death are a direct consequence of the DSB generated by bleomycin. Here, we use deglyco-bleomycin, a bleomycin derivative lacking the carbohydrate moiety. Although this molecule performs the same nucleophilic attacks on DNA as bleomycin, we show that deglyco-bleomycin is at least 100 times less toxic to Chinese hamster fibroblasts than bleomycin. In fact, deglyco-bleomycin treatment results in apoptosis induction. In contrast, however, deglyco-bleomycin was found to generate almost exclusively SSB. Our results suggest that more than 150 000 SSB per cell are required to trigger apoptosis in Chinese hamster fibroblasts and that SSB are 300 times less toxic than DSB. Taken together with previous studies on bleomycin, our data demonstrates that cells can die by apoptosis, mitotic cell death, or pseudoapoptosis, depending on the number of DNA breaks and on the ratio of SSB to DSB. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: bleomycin, deglyco-bleomycin-A 2, apoptosis, mitotic cell death, electroporation, electrochemotherapy

Full Text

The Full Text of this article is available as a PDF (159.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly C., Kénani A., Waring M. J. Analogue versus digital recognition of DNA by bleomycin: an effect of the carbohydrate moiety. FEBS Lett. 1995 Sep 25;372(2-3):144–147. doi: 10.1016/0014-5793(95)00968-f. [DOI] [PubMed] [Google Scholar]
  2. Cole A., Shonka F., Corry P., Cooper W. G. CHO cell repair of single-strand and double-strand DNA breaks induced by gamma- and alpha-radiations. Basic Life Sci. 1975;5B:665–676. doi: 10.1007/978-1-4684-2898-8_40. [DOI] [PubMed] [Google Scholar]
  3. Cullinan E. B., Gawron L. S., Rustum Y. M., Beerman T. A. Extrachromosomal chromatin: novel target for bleomycin cleavage in cells and solid tumors. Biochemistry. 1991 Mar 26;30(12):3055–3061. doi: 10.1021/bi00226a011. [DOI] [PubMed] [Google Scholar]
  4. Foray N., Fertil B., Alsbeih M. G., Badie C., Chavaudra N., Iliakis G., Malaise E. P. Dose-rate effect on radiation-induced DNA double-strand breaks in the human fibroblast HF19 cell line. Int J Radiat Biol. 1996 Feb;69(2):241–249. doi: 10.1080/095530096146084. [DOI] [PubMed] [Google Scholar]
  5. Goodhead D. T. The initial physical damage produced by ionizing radiations. Int J Radiat Biol. 1989 Nov;56(5):623–634. doi: 10.1080/09553008914551841. [DOI] [PubMed] [Google Scholar]
  6. Grimwade J. E., Beerman T. A. Measurement of bleomycin, neocarzinostatin, and auromomycin cleavage of cell-free and intracellular simian virus 40 DNA and chromatin. Mol Pharmacol. 1986 Oct;30(4):358–363. [PubMed] [Google Scholar]
  7. Jonathan E. C., Bernhard E. J., McKenna W. G. How does radiation kill cells? Curr Opin Chem Biol. 1999 Feb;3(1):77–83. doi: 10.1016/s1367-5931(99)80014-3. [DOI] [PubMed] [Google Scholar]
  8. Kenani A., Lamblin G., Hénichart J. P. A convenient method for the cleavage of the D-mannosyl-L-gulose disaccharide from bleomycin-A2. Carbohydr Res. 1988 Jun 15;177:81–89. doi: 10.1016/0008-6215(88)85043-2. [DOI] [PubMed] [Google Scholar]
  9. Kolesnick R. N., Haimovitz-Friedman A., Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol. 1994 Nov-Dec;72(11-12):471–474. doi: 10.1139/o94-063. [DOI] [PubMed] [Google Scholar]
  10. Kénani A., Bailly C., Helbecque N., Catteau J. P., Houssin R., Bernier J. L., Hénichart J. P. The role of the gulose-mannose part of bleomycin in activation of iron-molecular oxygen complexes. Biochem J. 1988 Jul 15;253(2):497–504. doi: 10.1042/bj2530497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mir L. M., Tounekti O., Orlowski S. Bleomycin: revival of an old drug. Gen Pharmacol. 1996 Jul;27(5):745–748. doi: 10.1016/0306-3623(95)02101-9. [DOI] [PubMed] [Google Scholar]
  12. Oppenheimer N. J., Chang C., Chang L. H., Ehrenfeld G., Rodriguez L. O., Hecht S. M. Deglyco-bleomycin. Degradation of DNA and formation of a structurally unique Fe(II) . CO complex. J Biol Chem. 1982 Feb 25;257(4):1606–1609. [PubMed] [Google Scholar]
  13. Orlowski S., Belehradek J., Jr, Paoletti C., Mir L. M. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol. 1988 Dec 15;37(24):4727–4733. doi: 10.1016/0006-2952(88)90344-9. [DOI] [PubMed] [Google Scholar]
  14. Orlowski S., Mir L. M. Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta. 1993 Jun 8;1154(1):51–63. doi: 10.1016/0304-4157(93)90016-h. [DOI] [PubMed] [Google Scholar]
  15. Peitsch M. C., Mannherz H. G., Tschopp J. The apoptosis endonucleases: cleaning up after cell death? Trends Cell Biol. 1994 Feb;4(2):37–41. doi: 10.1016/0962-8924(94)90002-7. [DOI] [PubMed] [Google Scholar]
  16. Povirk L. F., Han Y. H., Steighner R. J. Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5' extensions. Biochemistry. 1989 Jul 11;28(14):5808–5814. doi: 10.1021/bi00440a016. [DOI] [PubMed] [Google Scholar]
  17. Povirk L. F., Wübter W., Köhnlein W., Hutchinson F. DNA double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Res. 1977 Oct;4(10):3573–3580. doi: 10.1093/nar/4.10.3573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Santana P., Peña L. A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., Cordon-Cardo C., Schuchman E. H., Fuks Z., Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996 Jul 26;86(2):189–199. doi: 10.1016/s0092-8674(00)80091-4. [DOI] [PubMed] [Google Scholar]
  19. Smith C. A., Williams G. T., Kingston R., Jenkinson E. J., Owen J. J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature. 1989 Jan 12;337(6203):181–184. doi: 10.1038/337181a0. [DOI] [PubMed] [Google Scholar]
  20. Tounekti O., Belehradek J., Jr, Mir L. M. Relationships between DNA fragmentation, chromatin condensation, and changes in flow cytometry profiles detected during apoptosis. Exp Cell Res. 1995 Apr;217(2):506–516. doi: 10.1006/excr.1995.1116. [DOI] [PubMed] [Google Scholar]
  21. Tounekti O., Pron G., Belehradek J., Jr, Mir L. M. Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res. 1993 Nov 15;53(22):5462–5469. [PubMed] [Google Scholar]
  22. White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996 Jan 1;10(1):1–15. doi: 10.1101/gad.10.1.1. [DOI] [PubMed] [Google Scholar]
  23. Yoshida A., Ueda T., Wano Y., Nakamura T. DNA damage and cell killing by camptothecin and its derivative in human leukemia HL-60 cells. Jpn J Cancer Res. 1993 May;84(5):566–573. doi: 10.1111/j.1349-7006.1993.tb00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES