Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Apr;84(Suppl 1):3–10. doi: 10.1054/bjoc.2001.1746

Development and characterization of novel erythropoiesis stimulating protein (NESP)

J C Egrie 1, J K Browne 1
PMCID: PMC2363897  PMID: 11308268

Abstract

Studies on human erythropoietin (EPO) demonstrated that there is a direct relationship between the sialic acid-containing carbohydrate content of the molecule and its serum half-life and in vivo biological activity, but an inverse relationship with its receptor-binding affinity. These observations led to the hypothesis that increasing the carbohydrate content, beyond that found naturally, would lead to a molecule with enhanced biological activity. Hyperglycosylated recombinant human EPO (rHuEPO) analogues were developed to test this hypothesis. Darbepoetin alfa (novel erythropoiesis stimulating protein, NESP, ARANESPTM, Amgen Inc, Thousand Oaks, CA), which was engineered to contain 5 N-linked carbohydrate chains (two more than rHuEPO), has been evaluated in preclinical animal studies. Due to its increased sialic acid-containing carbohydrate content, NESP is biochemically distinct from rHuEPO, having an increased molecular weight and greater negative charge. Compared with rHuEPO, it has an approximate 3-fold longer serum half-life, greater in vivo potency, and can be administered less frequently to obtain the same biological response. NESP is currently being evaluated in human clinical trials for treatment of anaemia and reduction in its incidence.© 2001 Cance Cance Cancer Research Campaign

Keywords: erythropoietin, darbepoetin alfa, pharmacokinetics, biological activity, carbohydrate, review

Full Text

The Full Text of this article is available as a PDF (366.2 KB).

Footnotes

This review article was supported by Amgen Inc, Thousand Oaks, California, USA.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broudy V. C., Lin N., Egrie J., de Haën C., Weiss T., Papayannopoulou T., Adamson J. W. Identification of the receptor for erythropoietin on human and murine erythroleukemia cells and modulation by phorbol ester and dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6513–6517. doi: 10.1073/pnas.85.17.6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browne J. K., Cohen A. M., Egrie J. C., Lai P. H., Lin F. K., Strickland T., Watson E., Stebbing N. Erythropoietin: gene cloning, protein structure, and biological properties. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):693–702. doi: 10.1101/sqb.1986.051.01.082. [DOI] [PubMed] [Google Scholar]
  3. Cazzola M., Mercuriali F., Brugnara C. Use of recombinant human erythropoietin outside the setting of uremia. Blood. 1997 Jun 15;89(12):4248–4267. [PubMed] [Google Scholar]
  4. Cheetham J. C., Smith D. M., Aoki K. H., Stevenson J. L., Hoeffel T. J., Syed R. S., Egrie J., Harvey T. S. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol. 1998 Oct;5(10):861–866. doi: 10.1038/2302. [DOI] [PubMed] [Google Scholar]
  5. Cumming D. A. Glycosylation of recombinant protein therapeutics: control and functional implications. Glycobiology. 1991 Mar;1(2):115–130. doi: 10.1093/glycob/1.2.115. [DOI] [PubMed] [Google Scholar]
  6. D'Andrea A. D., Lodish H. F., Wong G. G. Expression cloning of the murine erythropoietin receptor. Cell. 1989 Apr 21;57(2):277–285. doi: 10.1016/0092-8674(89)90965-3. [DOI] [PubMed] [Google Scholar]
  7. Davis J. M., Arakawa T., Strickland T. W., Yphantis D. A. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry. 1987 May 5;26(9):2633–2638. doi: 10.1021/bi00383a034. [DOI] [PubMed] [Google Scholar]
  8. Delorme E., Lorenzini T., Giffin J., Martin F., Jacobsen F., Boone T., Elliott S. Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry. 1992 Oct 20;31(41):9871–9876. doi: 10.1021/bi00156a003. [DOI] [PubMed] [Google Scholar]
  9. Dordal M. S., Wang F. F., Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology. 1985 Jun;116(6):2293–2299. doi: 10.1210/endo-116-6-2293. [DOI] [PubMed] [Google Scholar]
  10. Dubé S., Fisher J. W., Powell J. S. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem. 1988 Nov 25;263(33):17516–17521. [PubMed] [Google Scholar]
  11. Egrie J. C., Strickland T. W., Lane J., Aoki K., Cohen A. M., Smalling R., Trail G., Lin F. K., Browne J. K., Hines D. K. Characterization and biological effects of recombinant human erythropoietin. Immunobiology. 1986 Sep;172(3-5):213–224. doi: 10.1016/S0171-2985(86)80101-2. [DOI] [PubMed] [Google Scholar]
  12. Eschbach J. W., Abdulhadi M. H., Browne J. K., Delano B. G., Downing M. R., Egrie J. C., Evans R. W., Friedman E. A., Graber S. E., Haley N. R. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med. 1989 Dec 15;111(12):992–1000. doi: 10.7326/0003-4819-111-12-992. [DOI] [PubMed] [Google Scholar]
  13. Eschbach J. W., Egrie J. C., Downing M. R., Browne J. K., Adamson J. W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987 Jan 8;316(2):73–78. doi: 10.1056/NEJM198701083160203. [DOI] [PubMed] [Google Scholar]
  14. Evans R. W., Rader B., Manninen D. L. The quality of life of hemodialysis recipients treated with recombinant human erythropoietin. Cooperative Multicenter EPO Clinical Trial Group. JAMA. 1990 Feb 9;263(6):825–830. [PubMed] [Google Scholar]
  15. Fukuda M. N., Sasaki H., Lopez L., Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood. 1989 Jan;73(1):84–89. [PubMed] [Google Scholar]
  16. Goldwasser E., Kung C. K., Eliason J. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem. 1974 Jul 10;249(13):4202–4206. [PubMed] [Google Scholar]
  17. Higuchi M., Oh-eda M., Kuboniwa H., Tomonoh K., Shimonaka Y., Ochi N. Role of sugar chains in the expression of the biological activity of human erythropoietin. J Biol Chem. 1992 Apr 15;267(11):7703–7709. [PubMed] [Google Scholar]
  18. Krantz S. B. Erythropoietin. Blood. 1991 Feb 1;77(3):419–434. [PubMed] [Google Scholar]
  19. LOWY P. H., KEIGHLEY G., BORSOOK H. Inactivation of erythropoietin by neuraminidase and by mild substitution reactions. Nature. 1960 Jan 9;185:102–103. doi: 10.1038/185102a0. [DOI] [PubMed] [Google Scholar]
  20. Lacombe C., Mayeux P. Biology of erythropoietin. Haematologica. 1998 Aug;83(8):724–732. [PubMed] [Google Scholar]
  21. Lai P. H., Everett R., Wang F. F., Arakawa T., Goldwasser E. Structural characterization of human erythropoietin. J Biol Chem. 1986 Mar 5;261(7):3116–3121. [PubMed] [Google Scholar]
  22. Lodish H. F., Hilton D. J., Klingmüller U., Watowich S. S., Wu H. The erythropoietin receptor: biogenesis, dimerization, and intracellular signal transduction. Cold Spring Harb Symp Quant Biol. 1995;60:93–104. doi: 10.1101/sqb.1995.060.01.012. [DOI] [PubMed] [Google Scholar]
  23. Lukowsky W. A., Painter R. H. Studies on the role of sialic acid in the physical and biological properties of erythropoietin. Can J Biochem. 1972 Aug;50(8):909–917. doi: 10.1139/o72-127. [DOI] [PubMed] [Google Scholar]
  24. Macdougall I. C., Gray S. J., Elston O., Breen C., Jenkins B., Browne J., Egrie J. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999 Nov;10(11):2392–2395. doi: 10.1681/ASN.V10112392. [DOI] [PubMed] [Google Scholar]
  25. Markham A., Bryson H. M. Epoetin alfa. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in nonrenal applications. Drugs. 1995 Feb;49(2):232–254. doi: 10.2165/00003495-199549020-00008. [DOI] [PubMed] [Google Scholar]
  26. Miyake T., Kung C. K., Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977 Aug 10;252(15):5558–5564. [PubMed] [Google Scholar]
  27. Narhi L. O., Arakawa T., Aoki K. H., Elmore R., Rohde M. F., Boone T., Strickland T. W. The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem. 1991 Dec 5;266(34):23022–23026. [PubMed] [Google Scholar]
  28. Recny M. A., Scoble H. A., Kim Y. Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. Identification of des-arginine 166 erythropoietin. J Biol Chem. 1987 Dec 15;262(35):17156–17163. [PubMed] [Google Scholar]
  29. Sasaki H., Bothner B., Dell A., Fukuda M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem. 1987 Sep 5;262(25):12059–12076. [PubMed] [Google Scholar]
  30. Sasaki H., Ochi N., Dell A., Fukuda M. Site-specific glycosylation of human recombinant erythropoietin: analysis of glycopeptides or peptides at each glycosylation site by fast atom bombardment mass spectrometry. Biochemistry. 1988 Nov 15;27(23):8618–8626. doi: 10.1021/bi00423a017. [DOI] [PubMed] [Google Scholar]
  31. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779–1783. doi: 10.1073/pnas.81.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sowade B., Sowade O., Möcks J., Franke W., Warnke H. The safety of treatment with recombinant human erythropoietin in clinical use: a review of controlled studies. Int J Mol Med. 1998 Feb;1(2):303–314. doi: 10.3892/ijmm.1.2.303. [DOI] [PubMed] [Google Scholar]
  33. Spivak J. L., Hogans B. B. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989 Jan;73(1):90–99. [PubMed] [Google Scholar]
  34. Syed R. S., Reid S. W., Li C., Cheetham J. C., Aoki K. H., Liu B., Zhan H., Osslund T. D., Chirino A. J., Zhang J. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998 Oct 1;395(6701):511–516. doi: 10.1038/26773. [DOI] [PubMed] [Google Scholar]
  35. Takeuchi M., Takasaki S., Miyazaki H., Kato T., Hoshi S., Kochibe N., Kobata A. Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J Biol Chem. 1988 Mar 15;263(8):3657–3663. [PubMed] [Google Scholar]
  36. Tsuda E., Goto M., Murakami A., Akai K., Ueda M., Kawanishi G., Takahashi N., Sasaki R., Chiba H., Ishihara H. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins. Biochemistry. 1988 Jul 26;27(15):5646–5654. doi: 10.1021/bi00415a038. [DOI] [PubMed] [Google Scholar]
  37. Winearls C. G., Oliver D. O., Pippard M. J., Reid C., Downing M. R., Cotes P. M. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet. 1986 Nov 22;2(8517):1175–1178. doi: 10.1016/s0140-6736(86)92192-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES