Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(10):1577–1584. doi: 10.1054/bjoc.2001.2123

Drug-induced alterations in tumour perfusion yield increases in tumour cell radiosensitivity

K L Bennewith 1, R E Durand 1
PMCID: PMC2363939  PMID: 11720448

Abstract

The perfusion of human tumour xenografts was manipulated by administration of diltiazem and pentoxifylline, and the extent that observed changes in tumour perfusion altered tumour radiosensitivity was determined. 2 tumour systems having intrinsically different types of hypoxia were studied. The responses of SiHa tumours, which have essentially no transient hypoxia, were compared to the responses of WiDr tumours, which contain chronically and transiently hypoxic cells. We found that relatively modest increases in net tumour perfusion increased tumour cell radiosensitivity in WiDr tumours to a greater extent than in SiHa tumours. Moreover, redistribution of blood flow within WiDr tumours was observed on a micro-regional level that was largely independent of changes in net tumour perfusion. Through fluorescence-activated cell sorting coupled with an in vivo–in vitro cloning assay, increases in the radiosensitivity of WiDr tumour cells at intermediate levels of oxygenation were observed, consistent with the expectation that a redistribution of tumour blood flow had increased oxygen delivery to transiently hypoxic tumour cells. Our data therefore suggest that drug-induced changes in tumour micro-perfusion can alter the radiosensitivity of transiently hypoxic tumour cells, and that increasing the radiosensitivity of tumour cells at intermediate levels of oxygenation is therapeutically relevant. © 2001 Cancer Research Campaign   http://www.bjcancer.com

Keywords: hypoxia, tumour perfusion, radiosensitivity, pentoxifylline, diltiazem

Full Text

The Full Text of this article is available as a PDF (94.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong M., Jr, Needham D., Hatchell D. L., Nunn R. S. Effect of pentoxifylline on the flow of polymorphonuclear leukocytes through a model capillary. Angiology. 1990 Apr;41(4):253–262. doi: 10.1177/000331979004100401. [DOI] [PubMed] [Google Scholar]
  2. Chaplin D. J., Durand R. E., Olive P. L. Acute hypoxia in tumors: implications for modifiers of radiation effects. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1279–1282. doi: 10.1016/0360-3016(86)90153-7. [DOI] [PubMed] [Google Scholar]
  3. Chaplin D. J., Durand R. E., Olive P. L. Cell selection from a murine tumour using the fluorescent probe Hoechst 33342. Br J Cancer. 1985 Apr;51(4):569–572. doi: 10.1038/bjc.1985.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Durand R. E., LePard N. E. Contribution of transient blood flow to tumour hypoxia in mice. Acta Oncol. 1995;34(3):317–323. doi: 10.3109/02841869509093982. [DOI] [PubMed] [Google Scholar]
  5. Durand R. E., LePard N. E. Modulation of tumor hypoxia by conventional chemotherapeutic agents. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):481–486. doi: 10.1016/0360-3016(94)90442-1. [DOI] [PubMed] [Google Scholar]
  6. Durand R. E. Use of a cell sorter for assays of cell clonogenicity. Cancer Res. 1986 Jun;46(6):2775–2778. [PubMed] [Google Scholar]
  7. Durand RE. Cell Kinetics and Repopulation During Multifraction Irradiation of Spheroids: Implications for Clinical Radiotherapy. Semin Radiat Oncol. 1993 Apr;3(2):105–114. doi: 10.1054/SRAO00300105. [DOI] [PubMed] [Google Scholar]
  8. Friedl F., Kimura I., Osato T., Ito Y. Studies on a new human cell line (SiHa) derived from carcinoma of uterus. I. Its establishment and morphology. Proc Soc Exp Biol Med. 1970 Nov;135(2):543–545. doi: 10.3181/00379727-135-35091a. [DOI] [PubMed] [Google Scholar]
  9. GULLINO P. M., GRANTHAM F. H. Studies on the exchange of fluids between host and tumor. II. The blood flow of hepatomas and other tumors in rats and mice. J Natl Cancer Inst. 1961 Dec;27:1465–1491. [PubMed] [Google Scholar]
  10. Greenberg D. A. Calcium channels and calcium channel antagonists. Ann Neurol. 1987 Apr;21(4):317–330. doi: 10.1002/ana.410210402. [DOI] [PubMed] [Google Scholar]
  11. Hakim T. S., Macek A. S. Effect of hypoxia on erythrocyte deformability in different species. Biorheology. 1988;25(6):857–868. doi: 10.3233/bir-1988-25606. [DOI] [PubMed] [Google Scholar]
  12. Honess D. J., Andrews M. S., Ward R., Bleehen N. M. Pentoxifylline increases RIF-1 tumour pO2 in a manner compatible with its ability to increase relative tumour perfusion. Acta Oncol. 1995;34(3):385–389. doi: 10.3109/02841869509093994. [DOI] [PubMed] [Google Scholar]
  13. Honess D. J., Dennis I. F., Bleehen N. M. Pentoxifylline: its pharmacokinetics and ability to improve tumour perfusion and radiosensitivity in mice. Radiother Oncol. 1993 Sep;28(3):208–218. doi: 10.1016/0167-8140(93)90060-l. [DOI] [PubMed] [Google Scholar]
  14. Kelleher D. K., Thews O., Vaupel P. Regional perfusion and oxygenation of tumors upon methylxanthine derivative administration. Int J Radiat Oncol Biol Phys. 1998 Nov 1;42(4):861–864. doi: 10.1016/s0360-3016(98)00318-6. [DOI] [PubMed] [Google Scholar]
  15. Lee I., Boucher Y., Demhartner T. J., Jain R. K. Changes in tumour blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline. Br J Cancer. 1994 Mar;69(3):492–496. doi: 10.1038/bjc.1994.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee I., Kim J. H., Levitt S. H., Song C. W. Increases in tumor response by pentoxifylline alone or in combination with nicotinamide. Int J Radiat Oncol Biol Phys. 1992;22(3):425–429. doi: 10.1016/0360-3016(92)90846-a. [DOI] [PubMed] [Google Scholar]
  17. Lee I., Levitt S. H., Song C. W. Improved tumour oxygenation and radiosensitization by combination with nicotinamide and pentoxifylline. Int J Radiat Biol. 1993 Aug;64(2):237–244. doi: 10.1080/09553009314551351. [DOI] [PubMed] [Google Scholar]
  18. Muruganandham M., Kasiviswanathan A., Jagannathan N. R., Raghunathan P., Jain P. C., Jain V. Diltiazem enhances tumor blood flow: MRI study in a murine tumor. Int J Radiat Oncol Biol Phys. 1999 Jan 15;43(2):413–421. doi: 10.1016/s0360-3016(98)00403-9. [DOI] [PubMed] [Google Scholar]
  19. Noguchi P., Wallace R., Johnson J., Earley E. M., O'Brien S., Ferrone S., Pellegrino M. A., Milstien J., Needy C., Browne W. Characterization of the WIDR: a human colon carcinoma cell line. In Vitro. 1979 Jun;15(6):401–408. doi: 10.1007/BF02618407. [DOI] [PubMed] [Google Scholar]
  20. Olive P. L., Chaplin D. J., Durand R. E. Pharmacokinetics, binding and distribution of Hoechst 33342 in spheroids and murine tumours. Br J Cancer. 1985 Nov;52(5):739–746. doi: 10.1038/bjc.1985.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SAPIRSTEIN L. A. Regional blood flow by fractional distribution of indicators. Am J Physiol. 1958 Apr;193(1):161–168. doi: 10.1152/ajplegacy.1958.193.1.161. [DOI] [PubMed] [Google Scholar]
  22. Song C. W., Hasegawa T., Kwon H. C., Lyons J. C., Levitt S. H. Increase in tumor oxygenation and radiosensitivity caused by pentoxifylline. Radiat Res. 1992 May;130(2):205–210. [PubMed] [Google Scholar]
  23. Song C. W., Makepeace C. M., Griffin R. J., Hasegawa T., Osborn J. L., Choi I. B., Nah B. S. Increase in tumor blood flow by pentoxifylline. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):433–437. doi: 10.1016/0360-3016(94)90433-2. [DOI] [PubMed] [Google Scholar]
  24. THOMLINSON R. H., GRAY L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955 Dec;9(4):539–549. doi: 10.1038/bjc.1955.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trotter M. J., Chaplin D. J., Durand R. E., Olive P. L. The use of fluorescent probes to identify regions of transient perfusion in murine tumors. Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):931–934. doi: 10.1016/0360-3016(89)90889-4. [DOI] [PubMed] [Google Scholar]
  26. Trotter M. J., Chaplin D. J., Olive P. L. Use of a carbocyanine dye as a marker of functional vasculature in murine tumours. Br J Cancer. 1989 May;59(5):706–709. doi: 10.1038/bjc.1989.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Nueten J. M., Vanhoutte P. M. Improvement of tissue perfusion with inhibitors of calcium ion influx. Biochem Pharmacol. 1980 Feb 15;29(4):479–481. doi: 10.1016/0006-2952(80)90365-2. [DOI] [PubMed] [Google Scholar]
  28. Wood P. J., Hirst D. G. Modification of tumour response by calcium antagonists in the SCVII/St tumour implanted at two different sites. Int J Radiat Biol. 1989 Sep;56(3):355–367. doi: 10.1080/09553008914551511. [DOI] [PubMed] [Google Scholar]
  29. Wouters B. G., Brown J. M. Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res. 1997 May;147(5):541–550. [PubMed] [Google Scholar]
  30. Zanelli G. D., Fowler J. F. The measurement of blood perfusion in experimental tumors by uptake of 86Rb. Cancer Res. 1974 Jun;34(6):1451–1456. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES