Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(10):1515–1521. doi: 10.1054/bjoc.2001.2106

p15INK4b in bladder carcinomas: decreased expression in superficial tumours

M A Le Frère-Belda 1,2, D Cappellen 3, A Daher 2, S Gil-Diez-de-Medina 2,3, F Besse 3, C C Abbou 2, J P Thiery 3, E S Zafrani 1, D K Chopin 2,3, F Radvanyi 3
PMCID: PMC2363957  PMID: 11720438

Abstract

The p15 gene which encodes a cyclin-dependent kinase inhibitor, is located in the 9p21 chromosomal region that is frequently deleted in human bladder transitional cell carcinomas (TCCs). The aim of the present paper is to study the potential involvement of the p15 gene in the evolution of TCCs. p15 mRNA expression was investigated by semi-quantitative RT-PCR in a series of 75 TCCs, 13 bladder cell lines and 6 normal bladder urothelia by semi-quantitative RT-PCR. p15 was expressed in the normal urothelium but p15 mRNA levels were significantly decreased in 66% of the superficial (Ta-T1) TCCs (P = 0.0015). In contrast, in muscle-invasive (T2-T4) TCCs, p15 expression differed widely between samples. p16 mRNA levels were also studied and there was no correlation between p15 and p16 mRNA levels, thus indicating that the two genes were regulated independently. Lower p15 expression in superficial tumours did not reflect a switch from quiescence to proliferative activity as normal proliferative urothelial controls did not present decreased p15 mRNA levels relative to quiescent normal urothelia. We further investigated the mechanisms underlying p15 down regulation. Homozygous deletions of the p15 gene, also involving the contiguous p16 gene, were observed in 42% of the TCCs with decreased p15 expression. No hypermethylation at multiple methylation-sensitive restriction sites in the 5́-CpG island of p15 was encountered in the remaining tumours. Our data suggest that decreased expression of p15 may be an important step in early neoplastic transformation of the urothelium and that a mechanism other than homozygous deletions or hypermethylation, may be involved in p15 down regulation.© 2001 Cancer Research Campaign  http://www.bjcancer.com

Keywords: bladder, human transitional cell carcinoma, cyclin-dependent kinase inhibitor, p15

Full Text

The Full Text of this article is available as a PDF (106.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedict W. F., Lerner S. P., Zhou J., Shen X., Tokunaga H., Czerniak B. Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer. Oncogene. 1999 Feb 4;18(5):1197–1203. doi: 10.1038/sj.onc.1202452. [DOI] [PubMed] [Google Scholar]
  2. Cappellen D., Gil Diez de Medina S., Chopin D., Thiery J. P., Radvanyi F. Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene. 1997 Jun 26;14(25):3059–3066. doi: 10.1038/sj.onc.1201154. [DOI] [PubMed] [Google Scholar]
  3. Coombs L. M., Pigott D., Proctor A., Eydmann M., Denner J., Knowles M. A. Simultaneous isolation of DNA, RNA, and antigenic protein exhibiting kinase activity from small tumor samples using guanidine isothiocyanate. Anal Biochem. 1990 Aug 1;188(2):338–343. doi: 10.1016/0003-2697(90)90617-i. [DOI] [PubMed] [Google Scholar]
  4. De Medina S. G., Popov Z., Chopin D. K., Southgate J., Tucker G. C., Delouvée A., Thiery J. P., Radvanyi F. Relationship between E-cadherin and fibroblast growth factor receptor 2b expression in bladder carcinomas. Oncogene. 1999 Oct 7;18(41):5722–5726. doi: 10.1038/sj.onc.1202958. [DOI] [PubMed] [Google Scholar]
  5. Diez de Medina S. G., Chopin D., El Marjou A., Delouvée A., LaRochelle W. J., Hoznek A., Abbou C., Aaronson S. A., Thiery J. P., Radvanyi F. Decreased expression of keratinocyte growth factor receptor in a subset of human transitional cell bladder carcinomas. Oncogene. 1997 Jan 23;14(3):323–330. doi: 10.1038/sj.onc.1200830. [DOI] [PubMed] [Google Scholar]
  6. Gonzalez-Zulueta M., Bender C. M., Yang A. S., Nguyen T., Beart R. W., Van Tornout J. M., Jones P. A. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995 Oct 15;55(20):4531–4535. [PubMed] [Google Scholar]
  7. Hall M., Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108. doi: 10.1016/s0065-230x(08)60352-8. [DOI] [PubMed] [Google Scholar]
  8. Hannon G. J., Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994 Sep 15;371(6494):257–261. doi: 10.1038/371257a0. [DOI] [PubMed] [Google Scholar]
  9. Herman J. G., Jen J., Merlo A., Baylin S. B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996 Feb 15;56(4):722–727. [PubMed] [Google Scholar]
  10. Herman J. G., Merlo A., Mao L., Lapidus R. G., Issa J. P., Davidson N. E., Sidransky D., Baylin S. B. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995 Oct 15;55(20):4525–4530. [PubMed] [Google Scholar]
  11. Jen J., Harper J. W., Bigner S. H., Bigner D. D., Papadopoulos N., Markowitz S., Willson J. K., Kinzler K. W., Vogelstein B. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 1994 Dec 15;54(24):6353–6358. [PubMed] [Google Scholar]
  12. Kamb A. Cell-cycle regulators and cancer. Trends Genet. 1995 Apr;11(4):136–140. doi: 10.1016/s0168-9525(00)89027-7. [DOI] [PubMed] [Google Scholar]
  13. Markowitz S. D., Roberts A. B. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev. 1996 Jun;7(1):93–102. doi: 10.1016/1359-6101(96)00001-9. [DOI] [PubMed] [Google Scholar]
  14. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  15. Miyamoto H., Kubota Y., Fujinami K., Dobashi Y., Kondo K., Yao M., Shuin T., Hosaka M. Infrequent somatic mutations of the p16 and p15 genes in human bladder cancer: p16 mutations occur only in low-grade and superficial bladder cancers. Oncol Res. 1995;7(7-8):327–330. [PubMed] [Google Scholar]
  16. Orlow I., Lacombe L., Hannon G. J., Serrano M., Pellicer I., Dalbagni G., Reuter V. E., Zhang Z. F., Beach D., Cordon-Cardo C. Deletion of the p16 and p15 genes in human bladder tumors. J Natl Cancer Inst. 1995 Oct 18;87(20):1524–1529. doi: 10.1093/jnci/87.20.1524. [DOI] [PubMed] [Google Scholar]
  17. Packenham J. P., Taylor J. A., Anna C. H., White C. M., Devereux T. R. Homozygous deletions but no sequence mutations in coding regions of p15 or p16 in human primary bladder tumors. Mol Carcinog. 1995 Nov;14(3):147–151. doi: 10.1002/mc.2940140303. [DOI] [PubMed] [Google Scholar]
  18. Radvanyi F., Christgau S., Baekkeskov S., Jolicoeur C., Hanahan D. Pancreatic beta cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol Cell Biol. 1993 Jul;13(7):4223–4232. doi: 10.1128/mcb.13.7.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reznikoff C. A., Belair C. D., Yeager T. R., Savelieva E., Blelloch R. H., Puthenveettil J. A., Cuthill S. A molecular genetic model of human bladder cancer pathogenesis. Semin Oncol. 1996 Oct;23(5):571–584. [PubMed] [Google Scholar]
  20. Serrano M., Hannon G. J., Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993 Dec 16;366(6456):704–707. doi: 10.1038/366704a0. [DOI] [PubMed] [Google Scholar]
  21. Sharpless N. E., DePinho R. A. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev. 1999 Feb;9(1):22–30. doi: 10.1016/s0959-437x(99)80004-5. [DOI] [PubMed] [Google Scholar]
  22. Sherr C. J. Cancer cell cycles. Science. 1996 Dec 6;274(5293):1672–1677. doi: 10.1126/science.274.5293.1672. [DOI] [PubMed] [Google Scholar]
  23. Sherr C. J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 1998 Oct 1;12(19):2984–2991. doi: 10.1101/gad.12.19.2984. [DOI] [PubMed] [Google Scholar]
  24. Southgate J., Proffitt J., Roberts P., Smith B., Selby P. Loss of cyclin-dependent kinase inhibitor genes and chromosome 9 karyotypic abnormalities in human bladder cancer cell lines. Br J Cancer. 1995 Nov;72(5):1214–1218. doi: 10.1038/bjc.1995.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spruck C. H., 3rd, Gonzalez-Zulueta M., Shibata A., Simoneau A. R., Lin M. F., Gonzales F., Tsai Y. C., Jones P. A. p16 gene in uncultured tumours. Nature. 1994 Jul 21;370(6486):183–184. doi: 10.1038/370183a0. [DOI] [PubMed] [Google Scholar]
  26. Stadler W. M., Olopade O. I. The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes. Urol Res. 1996;24(4):239–244. doi: 10.1007/BF00295899. [DOI] [PubMed] [Google Scholar]
  27. Stone S., Dayananth P., Jiang P., Weaver-Feldhaus J. M., Tavtigian S. V., Cannon-Albright L., Kamb A. Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. Oncogene. 1995 Sep 7;11(5):987–991. [PubMed] [Google Scholar]
  28. Williamson M. P., Elder P. A., Shaw M. E., Devlin J., Knowles M. A. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet. 1995 Sep;4(9):1569–1577. doi: 10.1093/hmg/4.9.1569. [DOI] [PubMed] [Google Scholar]
  29. Yeager T., Stadler W., Belair C., Puthenveettil J., Olopade O., Reznikoff C. Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res. 1995 Feb 1;55(3):493–497. [PubMed] [Google Scholar]
  30. de Boer W. I., Rebel J. M., Vermey M., de Jong A. A., van der Kwast T. H. Characterization of distinct functions for growth factors in murine transitional epithelial cells in primary organotypic culture. Exp Cell Res. 1994 Oct;214(2):510–518. doi: 10.1006/excr.1994.1288. [DOI] [PubMed] [Google Scholar]
  31. de Boer W. I., Vermeij M., Diez de Medina S. G., Bindels E., Radvanyi F., van der Kwast T., Chopin D. Functions of fibroblast and transforming growth factors in primary organoid-like cultures of normal human urothelium. Lab Invest. 1996 Aug;75(2):147–156. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES