Abstract
Immunophototherapy of cancer combines the specificity of a monoclonal antibody (MAb) to an overexpressed tumor marker with the phototoxic properties of the conjugated dye. To analyze the potential role of internalisation of the dye on photo-induced cytotoxicity, we compared two target antigens, carcinoembryonic antigen (CEA) that does not internalise and ErbB2 that does. Human ovarian carcinoma SKOv3 cells that express a high level of ErbB2 were transfected with the CEA cDNA. Using FACS analysis, the resulting cell line, SKOv3-CEA-1B9, demonstrated comparable levels of expression of the two target antigens. Aluminium tetrasulfophthalocyanine (AlPcS 4) was covalently coupled to anti-CEA MAb 35A7, anti-ErbB2 MAb FSP77 and a non-specific MAb PX, via a five-carbon sulfonamide spacer chain (A 1) at molar ratios ranging from 6 to 9 moles of AlPcS 4 per mole of MAb. The 35A7-(AlPcS 4 A 1)8 conjugate induced 68% growth inhibition of the SKOv3-CEA-1B9 cell line after a 20 h incubation at 2.50 μg/ml (based on AlPcS 4 A 1 content) following light exposure. However, the FSP77-(AlPcS 4 A 1)6 conjugate gave a 51% growth inhibition for an AlPcS 4 A 1 concentration as low as 0.04 μg/ml after the same incubation time and exposure to the same light dose. At a 1.25 μg/ml AlPcS 4 A 1 concentration, the FSP77-(AlPcS 4 A 1)6 conjugate gave a 67% growth inhibition after an incubation time as short as 1 h, reaching a 96% inhibition after an 8 h incubation time. Using an unique cell line that expresses two different target antigens, we demonstrated a clear advantage of an internalising over a non-internalising MAb-dye conjugate in terms of phototoxic efficacy. In vivo evaluation of the photodynamic properties of the conjugates is in progress. © 2001 Cancer Research Campaign http://www.bjcancer.com © 2001 Cancer Research Campaign
Keywords: immunophototherapy, phthalocyanine, monoclonal antibody, CEA, ErbB2
Full Text
The Full Text of this article is available as a PDF (142.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brasseur N., Langlois R., La Madeleine C., Ouellet R., van Lier J. E. Receptor-mediated targeting of phthalocyanines to macrophages via covalent coupling to native or maleylated bovine serum albumin. Photochem Photobiol. 1999 Mar;69(3):345–352. doi: 10.1562/0031-8655(1999)069<0345:rmtopt>2.3.co;2. [DOI] [PubMed] [Google Scholar]
- Carcenac M., Larroque C., Langlois R., van Lier J. E., Artus J. C., Pèlegrin A. Preparation, phototoxicity and biodistribution studies of anti-carcinoembryonic antigen monoclonal antibody-phthalocyanine conjugates. Photochem Photobiol. 1999 Dec;70(6):930–936. [PubMed] [Google Scholar]
- Del Governatore M., Hamblin M. R., Piccinini E. E., Ugolini G., Hasan T. Targeted photodestruction of human colon cancer cells using charged 17.1A chlorin e6 immunoconjugates. Br J Cancer. 2000 Jan;82(1):56–64. doi: 10.1054/bjoc.1999.0877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Governatore M., Hamblin M. R., Shea C. R., Rizvi I., Molpus K. G., Tanabe K. K., Hasan T. Experimental photoimmunotherapy of hepatic metastases of colorectal cancer with a 17.1A chlorin(e6) immunoconjugate. Cancer Res. 2000 Aug 1;60(15):4200–4205. [PubMed] [Google Scholar]
- Dougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998 Jun 17;90(12):889–905. doi: 10.1093/jnci/90.12.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duska L. R., Hamblin M. R., Bamberg M. P., Hasan T. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer. Br J Cancer. 1997;75(6):837–844. doi: 10.1038/bjc.1997.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goff B. A., Hermanto U., Rumbaugh J., Blake J., Bamberg M., Hasan T. Photoimmunotherapy and biodistribution with an OC125-chlorin immunoconjugate in an in vivo murine ovarian cancer model. Br J Cancer. 1994 Sep;70(3):474–480. doi: 10.1038/bjc.1994.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamblin M. R., Del Governatore M., Rizvi I., Hasan T. Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer. Br J Cancer. 2000 Dec;83(11):1544–1551. doi: 10.1054/bjoc.2000.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamblin M. R., Miller J. L., Hasan T. Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells. Cancer Res. 1996 Nov 15;56(22):5205–5210. [PubMed] [Google Scholar]
- Harwerth I. M., Wels W., Marte B. M., Hynes N. E. Monoclonal antibodies against the extracellular domain of the erbB-2 receptor function as partial ligand agonists. J Biol Chem. 1992 Jul 25;267(21):15160–15167. [PubMed] [Google Scholar]
- Köhler G., Howe S. C., Milstein C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J Immunol. 1976 Apr;6(4):292–295. doi: 10.1002/eji.1830060411. [DOI] [PubMed] [Google Scholar]
- Merlin J. L., Azzi S., Lignon D., Ramacci C., Zeghari N., Guillemin F. MTT assays allow quick and reliable measurement of the response of human tumour cells to photodynamic therapy. Eur J Cancer. 1992;28A(8-9):1452–1458. doi: 10.1016/0959-8049(92)90542-a. [DOI] [PubMed] [Google Scholar]
- Mew D., Wat C. K., Towers G. H., Levy J. G. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983 Mar;130(3):1473–1477. [PubMed] [Google Scholar]
- Oseroff A. R., Ohuoha D., Hasan T., Bommer J. C., Yarmush M. L. Antibody-targeted photolysis: selective photodestruction of human T-cell leukemia cells using monoclonal antibody-chlorin e6 conjugates. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8744–8748. doi: 10.1073/pnas.83.22.8744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pèlegrin A., Folli S., Buchegger F., Mach J. P., Wagnières G., van den Bergh H. Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer. 1991 May 15;67(10):2529–2537. doi: 10.1002/1097-0142(19910515)67:10<2529::aid-cncr2820671024>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Pèlegrin A., Terskikh A., Hayoz D., Chalandon Y., Olsson N. O., Folli S., Buchegger F., Kromer B., Schwarz K., Martin M. Human carcinoembryonic antigen cDNA expressed in rat carcinoma cells can function as target antigen for tumor localization of antibodies in nude rats and as rejection antigen in syngeneic rats. Int J Cancer. 1992 Aug 19;52(1):110–119. doi: 10.1002/ijc.2910520120. [DOI] [PubMed] [Google Scholar]
- Vrouenraets M. B., Visser G. W., Loup C., Meunier B., Stigter M., Oppelaar H., Stewart F. A., Snow G. B., van Dongen G. A. Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: A new possibility for use in photodynamic therapy. Int J Cancer. 2000 Oct 1;88(1):108–114. doi: 10.1002/1097-0215(20001001)88:1<108::aid-ijc17>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- Vrouenraets M. B., Visser G. W., Stewart F. A., Stigter M., Oppelaar H., Postmus P. E., Snow G. B., van Dongen G. A. Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy. Cancer Res. 1999 Apr 1;59(7):1505–1513. [PubMed] [Google Scholar]