Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(11):1655–1663. doi: 10.1054/bjoc.2001.2157

Quantitative imaging of tumour blood flow by contrast-enhanced magnetic resonance imaging

S Pahernik 1, J Griebel 2, A Botzlar 1, T Gneiting 2, M Brandl 2, M Dellian 1,3, A E Goetz 4
PMCID: PMC2363965  PMID: 11742483

Abstract

Tumour blood flow plays a key role in tumour growth, formation of metastasis, and detection and treatment of malignant tumours. Recent investigations provided increasing evidence that quantitative analysis of tumour blood flow is an indispensable prerequisite for developing novel treatment strategies and individualizing cancer therapy. Currently, however, methods for noninvasive, quantitative and high spatial resolution imaging of tumour blood flow are rare. We apply here a novel approach combining a recently established ultrafast MRI technique, that is T 1-relaxation time mapping, with a tracer kinetic model. For validation of this approach, we compared the results obtained in vivo with data provided by iodoantipyrine autoradiography as a reference technique for the measurement of tumour blood flow at a high resolution in an experimental tumour model. The MRI protocol allowed quantitative mapping of tumour blood flow at spatial resolution of 250 × 250 μm2. Correlation of data from the MRI method with the iodantipyrine autoradiography revealed Spearman's correlation coefficients of Rs = 0.851 (r = 0.775, P < 0.0001) and Rs = 0.821 (r = 0.72, P = 0.014) for local and global tumour blood flow, respectively. The presented approach enables noninvasive, repeated and quantitative assessment of microvascular perfusion at high spatial resolution encompassing the entire tumour. Knowledge about the specific vascular microenvironment of tumours will form the basis for selective antivascular cancer treatment in the future. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: tumour, blood flow, MRI, methodology

Full Text

The Full Text of this article is available as a PDF (176.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  2. Brix G., Bahner M. L., Hoffmann U., Horvath A., Schreiber W. Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT--initial experience. Radiology. 1999 Jan;210(1):269–276. doi: 10.1148/radiology.210.1.r99ja46269. [DOI] [PubMed] [Google Scholar]
  3. Brix G., Semmler W., Port R., Schad L. R., Layer G., Lorenz W. J. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr. 1991 Jul-Aug;15(4):621–628. doi: 10.1097/00004728-199107000-00018. [DOI] [PubMed] [Google Scholar]
  4. Burstein D., Taratuta E., Manning W. J. Factors in myocardial "perfusion" imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med. 1991 Aug;20(2):299–305. doi: 10.1002/mrm.1910200212. [DOI] [PubMed] [Google Scholar]
  5. Daldrup H. E., Shames D. M., Husseini W., Wendland M. F., Okuhata Y., Brasch R. C. Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med. 1998 Oct;40(4):537–543. doi: 10.1002/mrm.1910400406. [DOI] [PubMed] [Google Scholar]
  6. Degani H., Gusis V., Weinstein D., Fields S., Strano S. Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med. 1997 Jul;3(7):780–782. doi: 10.1038/nm0797-780. [DOI] [PubMed] [Google Scholar]
  7. Devries A. F., Griebel J., Kremser C., Judmaier W., Gneiting T., Kreczy A., Ofner D., Pfeiffer K. P., Brix G., Lukas P. Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res. 2001 Mar 15;61(6):2513–2516. [PubMed] [Google Scholar]
  8. Diesbourg L. D., Prato F. S., Wisenberg G., Drost D. J., Marshall T. P., Carroll S. E., O'Neill B. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med. 1992 Feb;23(2):239–253. doi: 10.1002/mrm.1910230205. [DOI] [PubMed] [Google Scholar]
  9. Donahue K. M., Burstein D., Manning W. J., Gray M. L. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med. 1994 Jul;32(1):66–76. doi: 10.1002/mrm.1910320110. [DOI] [PubMed] [Google Scholar]
  10. FORTNER J. G., MAHY A. G., SCHRODT G. R. Transplantable tumors of the Syrian (golden) hamster. I. Tumors of the alimentary tract, endocrine glands and melanomas. Cancer Res. 1961 Jul;21(6):161–198. [PubMed] [Google Scholar]
  11. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995 Jan;1(1):27–31. doi: 10.1038/nm0195-27. [DOI] [PubMed] [Google Scholar]
  12. Fritz-Hansen T., Rostrup E., Larsson H. B., Søndergaard L., Ring P., Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med. 1996 Aug;36(2):225–231. doi: 10.1002/mrm.1910360209. [DOI] [PubMed] [Google Scholar]
  13. Griebel J., Mayr N. A., de Vries A., Knopp M. V., Gneiting T., Kremser C., Essig M., Hawighorst H., Lukas P. H., Yuh W. T. Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging. 1997 Jan-Feb;7(1):111–119. doi: 10.1002/jmri.1880070115. [DOI] [PubMed] [Google Scholar]
  14. Hawighorst H., Weikel W., Knapstein P. G., Knopp M. V., Zuna I., Schönberg S. O., Vaupel P., van Kaick G. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res. 1998 Oct;4(10):2305–2312. [PubMed] [Google Scholar]
  15. Henderson E., Sykes J., Drost D., Weinmann H. J., Rutt B. K., Lee T. Y. Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging. 2000 Dec;12(6):991–1003. doi: 10.1002/1522-2586(200012)12:6<991::aid-jmri26>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  16. Hockel M., Schlenger K., Aral B., Mitze M., Schaffer U., Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996 Oct 1;56(19):4509–4515. [PubMed] [Google Scholar]
  17. Jain R. K. The next frontier of molecular medicine: delivery of therapeutics. Nat Med. 1998 Jun;4(6):655–657. doi: 10.1038/nm0698-655. [DOI] [PubMed] [Google Scholar]
  18. Judd R. M., Atalay M. K., Rottman G. A., Zerhouni E. A. Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn Reson Med. 1995 Feb;33(2):215–223. doi: 10.1002/mrm.1910330211. [DOI] [PubMed] [Google Scholar]
  19. Kuhnle G. E., Dellian M., Walenta S., Mueller-Klieser W., Goetz A. E. Simultaneous high-resolution measurement of adenosine triphosphate levels and blood flow in the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst. 1992 Nov 4;84(21):1642–1647. doi: 10.1093/jnci/84.21.1642. [DOI] [PubMed] [Google Scholar]
  20. Larsson H. B., Stubgaard M., Frederiksen J. L., Jensen M., Henriksen O., Paulson O. B. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med. 1990 Oct;16(1):117–131. doi: 10.1002/mrm.1910160111. [DOI] [PubMed] [Google Scholar]
  21. Larsson H. B., Stubgaard M., Søndergaard L., Henriksen O. In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging. 1994 May-Jun;4(3):433–440. doi: 10.1002/jmri.1880040332. [DOI] [PubMed] [Google Scholar]
  22. Lyng H., Dahle G. A., Kaalhus O., Skretting A., Rofstad E. K. Measurement of perfusion rate in human melanoma xenografts by contrast-enhanced magnetic resonance imaging. Magn Reson Med. 1998 Jul;40(1):89–98. doi: 10.1002/mrm.1910400113. [DOI] [PubMed] [Google Scholar]
  23. MEIER P., ZIERLER K. L. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954 Jun;6(12):731–744. doi: 10.1152/jappl.1954.6.12.731. [DOI] [PubMed] [Google Scholar]
  24. Mayr N. A., Yuh W. T., Magnotta V. A., Ehrhardt J. C., Wheeler J. A., Sorosky J. I., Davis C. S., Wen B. C., Martin D. D., Pelsang R. E. Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys. 1996 Oct 1;36(3):623–633. doi: 10.1016/s0360-3016(97)85090-0. [DOI] [PubMed] [Google Scholar]
  25. Nekolla S., Gneiting T., Syha J., Deichmann R., Haase A. T1 maps by K-space reduced snapshot-FLASH MRI. J Comput Assist Tomogr. 1992 Mar-Apr;16(2):327–332. doi: 10.1097/00004728-199203000-00031. [DOI] [PubMed] [Google Scholar]
  26. Rempp K. A., Brix G., Wenz F., Becker C. R., Gückel F., Lorenz W. J. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology. 1994 Dec;193(3):637–641. doi: 10.1148/radiology.193.3.7972800. [DOI] [PubMed] [Google Scholar]
  27. Sakurada O., Kennedy C., Jehle J., Brown J. D., Carbin G. L., Sokoloff L. Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol. 1978 Jan;234(1):H59–H66. doi: 10.1152/ajpheart.1978.234.1.H59. [DOI] [PubMed] [Google Scholar]
  28. Schmiedl U. P., Kenney J., Maravilla K. R. Dyke Award Paper. Kinetics of pathologic blood-brain-barrier permeability in an astrocytic glioma using contrast-enhanced MR. AJNR Am J Neuroradiol. 1992 Jan-Feb;13(1):5–14. [PMC free article] [PubMed] [Google Scholar]
  29. Strich G., Hagan P. L., Gerber K. H., Slutsky R. A. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology. 1985 Mar;154(3):723–726. doi: 10.1148/radiology.154.3.3969477. [DOI] [PubMed] [Google Scholar]
  30. Taylor J. S., Tofts P. S., Port R., Evelhoch J. L., Knopp M., Reddick W. E., Runge V. M., Mayr N. MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging. 1999 Dec;10(6):903–907. doi: 10.1002/(sici)1522-2586(199912)10:6<903::aid-jmri1>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  31. Tofts P. S., Kermode A. G. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991 Feb;17(2):357–367. doi: 10.1002/mrm.1910170208. [DOI] [PubMed] [Google Scholar]
  32. Tong C. Y., Prato F. S., Wisenberg G., Lee T. Y., Carroll E., Sandler D., Wills J., Drost D. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med. 1993 Sep;30(3):337–346. doi: 10.1002/mrm.1910300310. [DOI] [PubMed] [Google Scholar]
  33. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  34. Weidner N., Semple J. P., Welch W. R., Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991 Jan 3;324(1):1–8. doi: 10.1056/NEJM199101033240101. [DOI] [PubMed] [Google Scholar]
  35. de Vries A., Griebel J., Kremser C., Judmaier W., Gneiting T., Debbage P., Kremser T., Pfeiffer K. P., Buchberger W., Lukas P. Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology. 2000 Nov;217(2):385–391. doi: 10.1148/radiology.217.2.r00nv02385. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES