Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(11):1738–1745. doi: 10.1054/bjoc.2001.2160

gp100/pmel17 and tyrosinase encode multiple epitopes recognized by Th1-type CD4+T cells

L S Kierstead 1, E Ranieri 1, W Olson 1, V Brusic 4, J Sidney 5, A Sette 5, Y L Kasamon 1, C L Slingluff Jr 6, J M Kirkwood 2,7, W J Storkus 1,3,7
PMCID: PMC2363969  PMID: 11742496

Abstract

CD4+ T cells modulate the magnitude and durability of CTL responses in vivo, and may serve as effector cells in the tumour microenvironment. In order to identify the tumour epitopes recognized by tumour-reactive human CD4+ T cells, we combined the use of an HLA-DR4/peptide binding algorithm with an IFN-γ ELISPOT assay. Two known and three novel CD4+ T cell epitopes derived from the gp 100/pmel17 and tyrosinase melanocyte-associated antigens were confirmed or identified. Of major interest, we determined that freshly-isolated PBMC frequencies of Th1-type CD4+ T recognizing these peptides are frequently elevated in HLA-DR4+ melanoma patients (but not normal donors) that are currently disease-free as a result of therapeutic intervention. Epitope-specific CD4+ T cells from normal DR4+ donors could be induced, however, after in vitro stimulation with autologous dendritic cell pulsed with antigens (peptides or antigen-positive melanoma lysates) or infected with recombinant vaccinia virus encoding the relevant antigen. Peptide-reactive CD4+ T cells also recognized HLA-DR4+ melanoma cell lines that constitutively express the relevant antigen. Based on these data, these epitopes may serve as potent vaccine components to promote clinically-relevant Th1-type CD4+ T cell effector function in situ. http://www.bjcancer.com © 2001 Cancer Research Campaign

Keywords: tyrosinase, gp 100/pmel17, melanoma, helper T cells, ELISPOT, vaccine

Full Text

The Full Text of this article is available as a PDF (109.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. L., Sauter B., Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998 Mar 5;392(6671):86–89. doi: 10.1038/32183. [DOI] [PubMed] [Google Scholar]
  2. Aruga A., Aruga E., Cameron M. J., Chang A. E. Different cytokine profiles released by CD4+ and CD8+ tumor-draining lymph node cells involved in mediating tumor regression. J Leukoc Biol. 1997 Apr;61(4):507–516. doi: 10.1002/jlb.61.4.507. [DOI] [PubMed] [Google Scholar]
  3. Barger B. O., Acton R. T., Soong S. J., Roseman J., Balch C. Increase of HLA-DR4 in melanoma patients from Alabama. Cancer Res. 1982 Oct;42(10):4276–4279. [PubMed] [Google Scholar]
  4. Bour H., Horvath C., Lurquin C., Cerottini J. C., MacDonald H. R. Differential requirement for CD4 help in the development of an antigen-specific CD8+ T cell response depending on the route of immunization. J Immunol. 1998 Jun 1;160(11):5522–5529. [PubMed] [Google Scholar]
  5. Brinckerhoff L. H., Thompson L. W., Slingluff C. L., Jr Melanoma vaccines. Curr Opin Oncol. 2000 Mar;12(2):163–173. doi: 10.1097/00001622-200003000-00012. [DOI] [PubMed] [Google Scholar]
  6. Cochlovius B., Stassar M., Christ O., Raddrizzani L., Hammer J., Mytilineos I., Zöller M. In vitro and in vivo induction of a Th cell response toward peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program. J Immunol. 2000 Oct 15;165(8):4731–4741. doi: 10.4049/jimmunol.165.8.4731. [DOI] [PubMed] [Google Scholar]
  7. Czarnecki D., Nicholson I., Tait B., Nash C. HLA DR4 is associated with the development of multiple basal cell carcinomas and malignant melanoma. Dermatology. 1993;187(1):16–18. doi: 10.1159/000247190. [DOI] [PubMed] [Google Scholar]
  8. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics. 1994;39(4):230–242. doi: 10.1007/BF00188785. [DOI] [PubMed] [Google Scholar]
  9. Grohmann U., Fioretti M. C., Bianchi R., Belladonna M. L., Ayroldi E., Surace D., Silla S., Puccetti P. Dendritic cells, interleukin 12, and CD4+ lymphocytes in the initiation of class I-restricted reactivity to a tumor/self peptide. Crit Rev Immunol. 1998;18(1-2):87–98. doi: 10.1615/critrevimmunol.v18.i1-2.100. [DOI] [PubMed] [Google Scholar]
  10. Halliday G. M., Patel A., Hunt M. J., Tefany F. J., Barnetson R. S. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg. 1995 May-Jun;19(3):352–358. doi: 10.1007/BF00299157. [DOI] [PubMed] [Google Scholar]
  11. Herr W., Protzer U., Lohse A. W., Gerken G., Meyer zum Büschenfelde K. H., Wölfel T. Quantification of CD8+ T lymphocytes responsive to human immunodeficiency virus (HIV) peptide antigens in HIV-infected patients and seronegative persons at high risk for recent HIV exposure. J Infect Dis. 1998 Jul;178(1):260–265. doi: 10.1086/517449. [DOI] [PubMed] [Google Scholar]
  12. Honeyman M. C., Brusic V., Stone N. L., Harrison L. C. Neural network-based prediction of candidate T-cell epitopes. Nat Biotechnol. 1998 Oct;16(10):966–969. doi: 10.1038/nbt1098-966. [DOI] [PubMed] [Google Scholar]
  13. Kast W. M., Brandt R. M., Melief C. J. Strict peptide length is not required for the induction of cytotoxic T lymphocyte-mediated antiviral protection by peptide vaccination. Eur J Immunol. 1993 May;23(5):1189–1192. doi: 10.1002/eji.1830230534. [DOI] [PubMed] [Google Scholar]
  14. Kawakami Y., Robbins P. F., Wang R. F., Parkhurst M., Kang X., Rosenberg S. A. The use of melanosomal proteins in the immunotherapy of melanoma. J Immunother. 1998 Jul;21(4):237–246. doi: 10.1097/00002371-199807000-00001. [DOI] [PubMed] [Google Scholar]
  15. Kittlesen D. J., Thompson L. W., Gulden P. H., Skipper J. C., Colella T. A., Shabanowitz J., Hunt D. F., Engelhard V. H., Slingluff C. L., Jr, Shabanowitz J. A. Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development. J Immunol. 1998 Mar 1;160(5):2099–2106. [PubMed] [Google Scholar]
  16. Lorenz H. M., Hieronymus T., Grünke M., Manger B., Kalden J. R. Differential role for IL-2 and IL-15 in the inhibition of apoptosis in short-term activated human lymphocytes. Scand J Immunol. 1997 Jun;45(6):660–669. doi: 10.1046/j.1365-3083.1997.d01-443.x. [DOI] [PubMed] [Google Scholar]
  17. Matloubian M., Concepcion R. J., Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994 Dec;68(12):8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ogoshi K., Tajima T., Mitomi T., Tsuji K. HLA-DR4 antigen and lymph node metastases in poorly differentiated adenocarcinoma of the stomach. Cancer. 1994 May 1;73(9):2250–2252. doi: 10.1002/1097-0142(19940501)73:9<2250::aid-cncr2820730903>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  19. Ossendorp F., Mengedé E., Camps M., Filius R., Melief C. J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med. 1998 Mar 2;187(5):693–702. doi: 10.1084/jem.187.5.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ranieri E., Kierstead L. S., Zarour H., Kirkwood J. M., Lotze M. T., Whiteside T., Storkus W. J. Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest. 2000 May;29(2):121–125. doi: 10.3109/08820130009062294. [DOI] [PubMed] [Google Scholar]
  21. Sgadari C., Angiolillo A. L., Cherney B. W., Pike S. E., Farber J. M., Koniaris L. G., Vanguri P., Burd P. R., Sheikh N., Gupta G. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13791–13796. doi: 10.1073/pnas.93.24.13791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Skipper J. C., Hendrickson R. C., Gulden P. H., Brichard V., Van Pel A., Chen Y., Shabanowitz J., Wolfel T., Slingluff C. L., Jr, Boon T. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med. 1996 Feb 1;183(2):527–534. doi: 10.1084/jem.183.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Southwood S., Sidney J., Kondo A., del Guercio M. F., Appella E., Hoffman S., Kubo R. T., Chesnut R. W., Grey H. M., Sette A. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol. 1998 Apr 1;160(7):3363–3373. [PubMed] [Google Scholar]
  24. Storkus W. J., Zarour H. M. Melanoma antigens recognised by CD8+ and CD4+ T cells. Forum (Genova) 2000 Jul-Sep;10(3):256–270. [PubMed] [Google Scholar]
  25. Tannenbaum C. S., Tubbs R., Armstrong D., Finke J. H., Bukowski R. M., Hamilton T. A. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol. 1998 Jul 15;161(2):927–932. [PubMed] [Google Scholar]
  26. Topalian S. L., Gonzales M. I., Parkhurst M., Li Y. F., Southwood S., Sette A., Rosenberg S. A., Robbins P. F. Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med. 1996 May 1;183(5):1965–1971. doi: 10.1084/jem.183.5.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Touloukian C. E., Leitner W. W., Topalian S. L., Li Y. F., Robbins P. F., Rosenberg S. A., Restifo N. P. Identification of a MHC class II-restricted human gp100 epitope using DR4-IE transgenic mice. J Immunol. 2000 Apr 1;164(7):3535–3542. doi: 10.4049/jimmunol.164.7.3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turvy D. N., Blum J. S. Detection of biotinylated cell surface receptors and MHC molecules in a capture ELISA: a rapid assay to measure endocytosis. J Immunol Methods. 1998 Mar 1;212(1):9–18. doi: 10.1016/s0022-1759(97)00206-8. [DOI] [PubMed] [Google Scholar]
  29. Tüting T., Wilson C. C., Martin D. M., Kasamon Y. L., Rowles J., Ma D. I., Slingluff C. L., Jr, Wagner S. N., van der Bruggen P., Baar J. Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. J Immunol. 1998 Feb 1;160(3):1139–1147. [PubMed] [Google Scholar]
  30. Vidard L., Rock K. L., Benacerraf B. Heterogeneity in antigen processing by different types of antigen-presenting cells. Effect of cell culture on antigen processing ability. J Immunol. 1992 Sep 15;149(6):1905–1911. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES