Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(11):1764–1770. doi: 10.1054/bjoc.2001.2197

Anti-Her-2/neu antibody induces apoptosis in Her-2/neu overexpressing breast cancer cells independently from p53 status

T Brodowicz 1, D Kandioler 3, S Tomek 1, C Ludwig 3, M Rudas 4, R Kunstfeld 1, W Koestler 1, M Hejna 1, A Budinsky 1, C Wiltschke 1, C C Zielinski 1,2,5
PMCID: PMC2363971  PMID: 11742500

Abstract

Anti-Her-2/neu antibody is known to induce apoptosis in HER-2/neu overexpressing breast cancer cells. However, exact regulatory mechanisms mediating and controlling this phenomenon are still unknown. In the present study, we have investigated the effect of anti-Her-2/neu antibody on apoptosis of HER-2/neu overexpressing human breast cancer cell lines SK-BR-3, HTB-24, HTB-25, HTB-27, HTB-128, HTB-130 and HTB-131 in relation to p53 genotype and bcl-2 status. SK-BR-3, HTB-24, HTB-128 and HTB-130 cells exhibited mutant p53, whereas wild type p53 was found in HTB-25, HTB-27 and HTB-131 cells. All seven cell lines weakly expressed bcl-2 protein (10–20%). Anti-Her-2/neu antibody, irrespective of p53 and bcl-2 status, induced apoptosis in all 7 cell lines dose- and time-dependently and correlated with Her-2/neu overexpression. In addition, incubation of cell lines with anti-Her-2/neu antibody did not alter p53 or bcl-2 expression. Anti-HER-2/neu antibody did not induce apoptosis in HER-2/neu negative HBL-100 and HTB-132 cell lines. Our results indicate that within the panel of tested breast cancer cell lines, anti-Her-2/neu antibody-induced apoptosis was independent from the presence of intact p53. © 2001 Cancer Research Compaign http://www.bjcancer.com

Keywords: apoptosis, Bcl-2, breast cancer, HER-2/neu, p53

Full Text

The Full Text of this article is available as a PDF (125.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aas T., Børresen A. L., Geisler S., Smith-Sørensen B., Johnsen H., Varhaug J. E., Akslen L. A., Lønning P. E. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996 Jul;2(7):811–814. doi: 10.1038/nm0796-811. [DOI] [PubMed] [Google Scholar]
  2. Beham A., Marin M. C., Fernandez A., Herrmann J., Brisbay S., Tari A. M., Lopez-Berestein G., Lozano G., Sarkiss M., McDonnell T. J. Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene. 1997 Dec 4;15(23):2767–2772. doi: 10.1038/sj.onc.1201464. [DOI] [PubMed] [Google Scholar]
  3. Bergh J., Norberg T., Sjögren S., Lindgren A., Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995 Oct;1(10):1029–1034. doi: 10.1038/nm1095-1029. [DOI] [PubMed] [Google Scholar]
  4. Bracey T. S., Miller J. C., Preece A., Paraskeva C. Gamma-radiation-induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene. 1995 Jun 15;10(12):2391–2396. [PubMed] [Google Scholar]
  5. Brodowicz T., Wiltschke C., Budinsky A. C., Krainer M., Steger G. G., Zielinski C. C. Soluble HER-2/neu neutralizes biologic effects of anti-HER-2/neu antibody on breast cancer cells in vitro. Int J Cancer. 1997 Dec 10;73(6):875–879. doi: 10.1002/(sici)1097-0215(19971210)73:6<875::aid-ijc19>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  6. Brodowicz T., Wiltschke C., Kandioler-Eckersberger D., Grunt T. W., Rudas M., Schneider S. M., Hejna M., Budinsky A., Zielinski C. C. Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-alpha and retinoids. Br J Cancer. 1999 Jul;80(9):1350–1358. doi: 10.1038/sj.bjc.6690528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. M., Wouters B. G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 1999 Apr 1;59(7):1391–1399. [PubMed] [Google Scholar]
  8. Buckbinder L., Talbott R., Velasco-Miguel S., Takenaka I., Faha B., Seizinger B. R., Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995 Oct 19;377(6550):646–649. doi: 10.1038/377646a0. [DOI] [PubMed] [Google Scholar]
  9. Burstein H. J., Kuter I., Campos S. M., Gelman R. S., Tribou L., Parker L. M., Manola J., Younger J., Matulonis U., Bunnell C. A. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2001 May 15;19(10):2722–2730. doi: 10.1200/JCO.2001.19.10.2722. [DOI] [PubMed] [Google Scholar]
  10. Chiou S. K., Rao L., White E. Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol. 1994 Apr;14(4):2556–2563. doi: 10.1128/mcb.14.4.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cobleigh M. A., Vogel C. L., Tripathy D., Robert N. J., Scholl S., Fehrenbacher L., Wolter J. M., Paton V., Shak S., Lieberman G. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999 Sep;17(9):2639–2648. doi: 10.1200/JCO.1999.17.9.2639. [DOI] [PubMed] [Google Scholar]
  12. Coussens L., Yang-Feng T. L., Liao Y. C., Chen E., Gray A., McGrath J., Seeburg P. H., Libermann T. A., Schlessinger J., Francke U. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985 Dec 6;230(4730):1132–1139. doi: 10.1126/science.2999974. [DOI] [PubMed] [Google Scholar]
  13. Delia D., Aiello A., Lombardi L., Pelicci P. G., Grignani F., Grignani F., Formelli F., Menard S., Costa A., Veronesi U. N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res. 1993 Dec 15;53(24):6036–6041. [PubMed] [Google Scholar]
  14. Di Leonardo A., Linke S. P., Clarkin K., Wahl G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994 Nov 1;8(21):2540–2551. doi: 10.1101/gad.8.21.2540. [DOI] [PubMed] [Google Scholar]
  15. Dragovich T., Rudin C. M., Thompson C. B. Signal transduction pathways that regulate cell survival and cell death. Oncogene. 1998 Dec 24;17(25):3207–3213. doi: 10.1038/sj.onc.1202587. [DOI] [PubMed] [Google Scholar]
  16. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998 Aug 1;12(15):2245–2262. doi: 10.1101/gad.12.15.2245. [DOI] [PubMed] [Google Scholar]
  17. Elledge R. M., Gray R., Mansour E., Yu Y., Clark G. M., Ravdin P., Osborne C. K., Gilchrist K., Davidson N. E., Robert N. Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. J Natl Cancer Inst. 1995 Aug 16;87(16):1254–1256. doi: 10.1093/jnci/87.16.1254. [DOI] [PubMed] [Google Scholar]
  18. Harris C. C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996 Oct 16;88(20):1442–1455. doi: 10.1093/jnci/88.20.1442. [DOI] [PubMed] [Google Scholar]
  19. Harvey M., Sands A. T., Weiss R. S., Hegi M. E., Wiseman R. W., Pantazis P., Giovanella B. C., Tainsky M. A., Bradley A., Donehower L. A. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene. 1993 Sep;8(9):2457–2467. [PubMed] [Google Scholar]
  20. Harwerth I. M., Wels W., Marte B. M., Hynes N. E. Monoclonal antibodies against the extracellular domain of the erbB-2 receptor function as partial ligand agonists. J Biol Chem. 1992 Jul 25;267(21):15160–15167. [PubMed] [Google Scholar]
  21. Harwerth I. M., Wels W., Schlegel J., Müller M., Hynes N. E. Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br J Cancer. 1993 Dec;68(6):1140–1145. doi: 10.1038/bjc.1993.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  23. Israeli D., Tessler E., Haupt Y., Elkeles A., Wilder S., Amson R., Telerman A., Oren M. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 1997 Jul 16;16(14):4384–4392. doi: 10.1093/emboj/16.14.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnson T. M., Yu Z. X., Ferrans V. J., Lowenstein R. A., Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11848–11852. doi: 10.1073/pnas.93.21.11848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kandioler-Eckersberger D., Ludwig C., Rudas M., Kappel S., Janschek E., Wenzel C., Schlagbauer-Wadl H., Mittlböck M., Gnant M., Steger G. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res. 2000 Jan;6(1):50–56. [PubMed] [Google Scholar]
  26. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  27. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kraus M. H., Popescu N. C., Amsbaugh S. C., King C. R. Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J. 1987 Mar;6(3):605–610. doi: 10.1002/j.1460-2075.1987.tb04797.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
  30. Lehman T. A., Bennett W. P., Metcalf R. A., Welsh J. A., Ecker J., Modali R. V., Ullrich S., Romano J. W., Appella E., Testa J. R. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res. 1991 Aug 1;51(15):4090–4096. [PubMed] [Google Scholar]
  31. Lupu R., Colomer R., Zugmaier G., Sarup J., Shepard M., Slamon D., Lippman M. E. Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science. 1990 Sep 28;249(4976):1552–1555. doi: 10.1126/science.2218496. [DOI] [PubMed] [Google Scholar]
  32. Naumovski L., Cleary M. L. The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol Cell Biol. 1996 Jul;16(7):3884–3892. doi: 10.1128/mcb.16.7.3884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. O'Connor P. M., Jackman J., Bae I., Myers T. G., Fan S., Mutoh M., Scudiero D. A., Monks A., Sausville E. A., Weinstein J. N. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997 Oct 1;57(19):4285–4300. [PubMed] [Google Scholar]
  34. Owen-Schaub L. B., Zhang W., Cusack J. C., Angelo L. S., Santee S. M., Fujiwara T., Roth J. A., Deisseroth A. B., Zhang W. W., Kruzel E. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol. 1995 Jun;15(6):3032–3040. doi: 10.1128/mcb.15.6.3032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pegram M. D., Lipton A., Hayes D. F., Weber B. L., Baselga J. M., Tripathy D., Baly D., Baughman S. A., Twaddell T., Glaspy J. A. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998 Aug;16(8):2659–2671. doi: 10.1200/JCO.1998.16.8.2659. [DOI] [PubMed] [Google Scholar]
  36. Reed J. C. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994 Jan;124(1-2):1–6. doi: 10.1083/jcb.124.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reed J. C. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999 Sep;17(9):2941–2953. doi: 10.1200/JCO.1999.17.9.2941. [DOI] [PubMed] [Google Scholar]
  38. Sarkis A. S., Bajorin D. F., Reuter V. E., Herr H. W., Netto G., Zhang Z. F., Schultz P. K., Cordon-Cardo C., Scher H. I. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J Clin Oncol. 1995 Jun;13(6):1384–1390. doi: 10.1200/JCO.1995.13.6.1384. [DOI] [PubMed] [Google Scholar]
  39. Shao Z. M., Dawson M. I., Li X. S., Rishi A. K., Sheikh M. S., Han Q. X., Ordonez J. V., Shroot B., Fontana J. A. p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene. 1995 Aug 3;11(3):493–504. [PubMed] [Google Scholar]
  40. Sionov R. V., Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999 Nov 1;18(45):6145–6157. doi: 10.1038/sj.onc.1203130. [DOI] [PubMed] [Google Scholar]
  41. Slamon D. J., Leyland-Jones B., Shak S., Fuchs H., Paton V., Bajamonde A., Fleming T., Eiermann W., Wolter J., Pegram M. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783–792. doi: 10.1056/NEJM200103153441101. [DOI] [PubMed] [Google Scholar]
  42. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
  43. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  44. Thor A. D., Moore DH I. I., Edgerton S. M., Kawasaki E. S., Reihsaus E., Lynch H. T., Marcus J. N., Schwartz L., Chen L. C., Mayall B. H. Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst. 1992 Jun 3;84(11):845–855. doi: 10.1093/jnci/84.11.845. [DOI] [PubMed] [Google Scholar]
  45. Venot C., Maratrat M., Dureuil C., Conseiller E., Bracco L., Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 1998 Aug 17;17(16):4668–4679. doi: 10.1093/emboj/17.16.4668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wahl A. F., Donaldson K. L., Fairchild C., Lee F. Y., Foster S. A., Demers G. W., Galloway D. A. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med. 1996 Jan;2(1):72–79. doi: 10.1038/nm0196-72. [DOI] [PubMed] [Google Scholar]
  47. Wang X. W., Vermeulen W., Coursen J. D., Gibson M., Lupold S. E., Forrester K., Xu G., Elmore L., Yeh H., Hoeijmakers J. H. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996 May 15;10(10):1219–1232. doi: 10.1101/gad.10.10.1219. [DOI] [PubMed] [Google Scholar]
  48. Wu G. S., Burns T. F., McDonald E. R., 3rd, Meng R. D., Kao G., Muschel R., Yen T., el-Deiry W. S. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene. 1999 Nov 11;18(47):6411–6418. doi: 10.1038/sj.onc.1203025. [DOI] [PubMed] [Google Scholar]
  49. Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993 Dec 16;366(6456):701–704. doi: 10.1038/366701a0. [DOI] [PubMed] [Google Scholar]
  50. Yin C., Knudson C. M., Korsmeyer S. J., Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature. 1997 Feb 13;385(6617):637–640. doi: 10.1038/385637a0. [DOI] [PubMed] [Google Scholar]
  51. Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991 Jul 25;352(6333):345–347. doi: 10.1038/352345a0. [DOI] [PubMed] [Google Scholar]
  52. Zha H., Reed J. C. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem. 1997 Dec 12;272(50):31482–31488. doi: 10.1074/jbc.272.50.31482. [DOI] [PubMed] [Google Scholar]
  53. Zhang C. C., Yang J. M., White E., Murphy M., Levine A., Hait W. N. The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene. 1998 Mar 26;16(12):1617–1624. doi: 10.1038/sj.onc.1201658. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES